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  ABSTRACT 17 

Nanoprecipitation and dialysis methods were employed to obtain nanoparticles (NPs) of 18 

acetylated cashew gum (ACG). NPs synthesized by dialysis showed greater average size 19 

compared to those synthesized by nanoprecipitation, but they presented improved 20 

stability and yield. NPs were loaded with diclofenac diethylamine and the efficiency of 21 

the drug incorporation was over 60 % for both methods, for an ACG:NP a weight ratio 22 

of 10:1.The cytotoxicity assay demonstrated that the NPs had no significant effect on 23 

the cell viability, verifying their biocompatibility. The release profile for the diclofenac 24 

diethylamine associated with the ACG-NPs showed a more controlled release compared 25 

to the free drug and a Fickian diffusion mechanism was observed. Transdermal 26 

permeation reached 90 % penetration of the drug. 27 

Keywords: nanoparticles; acetylated cashew gum; Diclofenac diethyl amine; 28 

cytotoxicity; transdermal delivery 29 

 30 



Page 2 of 33

Acc
ep

te
d 

M
an

us
cr

ip
t

 31 

Chemical compounds 32 

acetone (CID: 180);  acetonitrile (CID: 6342); acetic anhydride (CID: 7918);  diclofenac 33 
diethylamine (CID:115087); dimethyl sulfoxide (CID:679); ethanol (CID:702); 34 
formamide (CID: 713); phosphoric acid (CID:1004); pyridine (CID: 1049); sodium 35 
hidroxide (CID: 14798). 36 
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Parnaíba, Piauí. Avenida São Sebastião, CEP 64202020 39 

Phone: +55 86 33235433 40 

E-mail: durcileneas@yahoo.com.br  41 

 42 
 43 

1. Introduction 44 
 45 

In the area of pharmaceutical technology differentiated systems have been 46 

developed for targeted drug delivery. In this regard, polymeric materials have received 47 

more attention than other classes of materials in the development of drug delivery 48 

systems (Kim et al., 2009).  Certain properties of polysaccharides, such as 49 

biodegradability and biocompatibility, mean that many researchers have selected these 50 

polymers for the preparation of biomaterials (Liu et al., 2008). 51 

Cashew gum (CG) is a polysaccharide extracted from an affordable and easily 52 

available source, that is, the species Anacardium occidentale, which is widely 53 

distributed in northeastern Brazil. Purified cashew gum contains galactose (72-73%), 54 

glucose (11-14%), arabinose (4.6 to 5%), rhamnose (3.2-4%) and glucuronic acid (4.7 55 

to 6.3%) in its structure (Paula and Rodrigues, 1995; Paula, de Paula, Heatley, & Budd, 56 

1998). 57 

In the biomedical field some potential applications of cashew gum are already 58 

known, for instance, it acts as an anti-inflammatory agent in the healing of mice 59 

(Shirato et al., 2006), shows significant antibacterial activity (Torquato, 2004; Campos, 60 
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2012), is an excellent film forming material, with potential application in 61 

nanobiomedical devices (Araújo et al., 2012), and it has demonstrated an in vivo anti-62 

tumor effect (Florêncio, Melo Mota, Melo-Junior & Araújo, 2007). In the 63 

pharmaceutical area it has been reported that cashew gum can act as a gelling agent in 64 

the topical formulation of aceclofenac (Kumar, Patil, Patil, & Paschapur, 2009) and as a 65 

binder for paracetamol tablets (Gowthamarajan et al., 2011). Also, it is used to 66 

produce curcumin tablets with buccal adhesive ability and thus circumvent hepatic 67 

metabolism and improve the bioavailability of the active principle (Gowthamarajan et 68 

al., 2012). 69 

However, there are some difficulties associated with the use of gums, such as a 70 

drop in viscosity during storage and the possibility of microbial contamination. 71 

Chemical modification not only minimizes these disadvantages but also allows more 72 

specific drug delivery (Rana et al., 2011) and it can improve the efficiency of the 73 

incorporation of the drug into the matrix (Zhang et al., 2009). 74 

Cashew gum nanoparticles grafted with acrylic acid were obtained by radical 75 

polymerization using Ce (IV) ions as the initiator and methylene-bis-acrylamide as the 76 

crosslinker. Nanoparticles which are pH-sensitive were obtained with sizes in the range 77 

of 71-603 nm, depending on the gum/acrylic acid ratio (Silva et al. 2009). Nanoparticles 78 

based on carboxymethylated cashew gum (CMCG) and chitosan were synthesized with 79 

diameters ranging from 150 to 400 nm. Smaller particle sizes were obtained for CMCG 80 

samples with a lower degree of substitution (DS) (Silva et al., 2010). 81 

In a previous study, acetylated cashew gum (ACG) with a DS of 2.8 was 82 

synthesized and self-assembled nanoparticles were obtained through the dialysis of an 83 

organic solution (DMSO) against a non-solvent (water). The mean diameter of the self-84 

assembled nanoparticles obtained was 179 nm and the critical aggregation concentration 85 
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(CAC) in water was 2.1x10-3 g/L. Indomethacin (IND) was used as a hydrophobic 86 

model drug and was incorporated into the hydrophobized polysaccharide nanoparticles. 87 

A controlled drug release was observed for up to 72 h (Pitombeira et al., 2015). 88 

Nanoparticles (NPs) as polymeric carriers of drugs have been the subject of 89 

several reviews in the literature (Liu et al., 2008; Langer & Tirrell, 2004; Uhrich, et al., 90 

1999; Peppas, 1995; Soppimath et al., 2001; Singh & Lillard, 2009; Oh, Lee & Park, 91 

2009; Kumari Yadav & Yadav, 2010). In this context, anti-inflammatory drugs 92 

(NSAIDs) are frequently the drug investigated, in an attempt to overcome some 93 

difficulties related to their pharmacokinetics and pharmacodynamics, as well as several 94 

adverse effects resulting from their oral and parenteral administration, such as gastric 95 

irritation and ulceration (Beck et al., 1990; Galer, et al. 2000; Jones & Rubin, 2008). 96 

Nanoencapsulation in polymeric systems protects the drug and contributes to a 97 

controlled release, thus increasing the therapeutic benefit with minimal side effects 98 

(Soppimath, et al., 2001). The transdermal route also reduces these side effects, 99 

increases patient compliance, avoids hepatic metabolism, and maintains the plasma drug 100 

concentration for a longer period (Shakeel et al., 2007; Prow et al., 2011). 101 

In this study, different methods for the preparation of acetylated cashew gum 102 

(ACG) nanoparticles were investigated and studies on the incorporation, release and 103 

cutaneous permeation of diclofenac diethylamine were carried out, as a proof-of-104 

concept for a transdermal drug delivery device. 105 

 106 

2. Materials and Methods  107 

2.1 Materials 108 

Diclofenac diethylamine (DDA) was purchased from Henrifarma, Teresina, lot 109 

10100025. The cashew gum (CG) was isolated from a tree of the species Anacardium 110 
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occidentale (Mw = 1.8x105 g/mol) using an adapted method previously described by 111 

Paula, Heatley and Budd (1998). The exudate was dissolved in distilled water at room 112 

temperature to give a 10% (w/v) solution. The  pH was adjusted to approximately 7.0 by 113 

addition of diluted aqueous sodium hydroxide. The clear solution was successively 114 

filtered through sintered glass and the polysaccharide precipitated with ethanol at ratio 115 

of 1:3 (gum solution: ethanol). The precipitate (isolated gum) was dried in a forced air 116 

oven at 60ºC/8 h and weighed. 117 

All other reagents were of analytical grade (Formamide, pyridine, acetic 118 

anhydride, dimethyl sulfoxide, sodium hidroxide, ethanol, acetone were purchased from 119 

Vetec and acetonitrile and phosphoric acid were purchased from Sigma-Aldrich) 120 

    121 

2.2 Acetylation of cashew gum  122 

The acetylated cashew gum (ACG) was synthesized by Motozato´s method 123 

(1986) as reported in Pitombeira et al. (2015) with a degree of substitution of 2.8. 124 

Cashew gum (1 g) was suspended in 20 ml of formamide under vigorous stirring. 125 

Pyridine (3 g) and acetic anhydride (7 g) were added and the mixture was stirred for 24h 126 

at 50°C. The ACG was obtained by precipitation with 400 mL of water. The solid was 127 

filtered, washed with water and dried in hot air.   128 

The polysaccharide obtained was characterized by infrared spectroscopy and 129 

nuclear magnetic resonance spectroscopy.  FT-IR spectra were recorded with KBr 130 

pellets on an FT-IR Shimadzu 8300 spectrophotometer in the range of 4,000 to 400 131 

cm1,with a resolution of 2 cm-1 and 15 scans. 1H NMR spectra of 3% w/v solutions in 132 

DMSO-d6 were recorded at 353 K on a Fourier transform Bruker Avance DRX 500 133 

spectrometer with an inverse multinuclear gradient probe-head equipped with z-shielded 134 
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gradient coils and a Silicon Graphics workstation. Sodium 2,2-dimethylsilapentane-5-135 

sulphonate (DSS) was used as the internal standard (0.00 ppm for 1H).  136 

2.3 Preparation of ACG nanoparticles  137 

The synthesis of the nanoparticles was performed using two different methods: 138 

nanoprecipitation and dialysis (Raoa and Geckeler, 2011).  Identical procedures were 139 

conducted for the synthesis of NPs containing the drug.  In both methods the ACG was 140 

dissolved in 20 mL (0.1% w/w) of acetone for 15 min under magnetic stirring. 141 

Diclofenac diethylamine (DDA) is a hydrophobic drug and it was incorporated into the 142 

ACG nanoparticles at the time of their synthesis.  The drug-loaded nanoparticles 143 

obtained are referred to herein as ACG-DDA-NPs. For both methods investigated three 144 

polymer/drug proportions (by weight) were studied (10:1, 10:2 and 10:5). 145 

 146 

2.3.1 Nanoprecipitation  147 

A solution of ACG in acetone (0.1%w/w) was dispersed in 20 mL of deionized 148 

water in a homogenizer (Ultra Turrax T25 Basic Heidolpha) at 19,000 rpm. Removal of 149 

the solvent by evaporation was carried out in a Heidolph Rzr205 rotoevaporator system 150 

at 40ºC. The material was then filtered with a 0.45 µm syringe filter and the solution 151 

centrifuged at 20,000 rpm for 2 h for purification of the polymer. 152 

 153 

2.3.2 Dialysis  154 

A solution of ACG in acetone (0.1%w/w) was dialyzed against deionized water 155 

using a cellulose acetate membrane (molecular weight 12,000) for 24 h. The 156 

conductivity was used to monitor the water exchange. The resulting solution was then 157 

lyophilized. 158 
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 159 

2.4 Amount of drug encapsulated and the encapsulation efficiency (%EE)  160 

The amount of DDA in the nanoparticles was determined by UV-Vis 161 

spectroscopy at 276 nm.  The analysis was performed on a Shimadzu UV-1800 162 

equipment, coupled to a standard PC and operated via UV probe software 2:33. Quartz 163 

cells were used and readings were taken between 190 and 400 nm. The amount of 164 

encapsulated diclofenac was calculated using a calibration curve to determine the 165 

relationship between the absorbance and the concentration (R2= 0.9998 and Y = 0.290 + 166 

28.58X). The drug load (%) and drug efficiency (%EE) were calculated as 167 

Drug Load (%DL)  168 

                                                                   (1) 169 

Encapsulation efficiency (%EE)  170 

                                                                                          (2) 171 

 172 

2.5 Dynamic light scattering (DLS) and zeta potential 173 

The particle size and zeta potential were determined on a Malvern Zetasizer 174 

Nano ZS Model 3600 analyzer. The hydrodynamic diameter was measured by dynamic 175 

light scattering (DLS), using a 633 nm laser at a fixed scattering angle of 173°. The 176 

particle size was obtained considering the particle as spherical-like. Each sample was 177 

measured in triplicate and is reported as the mean ±SD (n=3). 178 

2.6 Scanning electron Microscopy (SEM) 179 
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The scanning electron microscopy was recorded using a Jeol-6360LV field 180 

emission. To prepare the SEM sample, a drop of nanoparticles was deposited on carbon 181 

stickers on aluminum stubs, dried and coated with gold. 182 

 183 

2.7 In vitro DDA release assay  184 

The release profiles for the free DDA and the drug-loaded nanoparticles (ACG-185 

DDA-NPs) were obtained using a dialysis system. A sample (6 mg) of the ACG-DDA 186 

NPs was introduced into cellulose acetate membrane with molecular exclusion pores of 187 

12,000 Da and dialyzed against 50 mL of phosphate buffer solution (PBS), pH 7.4 at 188 

37°C for 24 h. 189 

Aliquots of 1.5 ml were withdrawn every 30 min and the drug concentration 190 

was quantified by UV-vis spectroscopy. The buffer was replenished to keep the volume 191 

constant. The measurements of the absorbance at a wavelength at 276 nm were 192 

converted into the percentage of drug released according to a previously established 193 

calibration curve for which the linearity was confirmed (R2 = 0.999). The experiment 194 

was performed in triplicate and the drug concentrations were corrected considering the 195 

dilution factor. To understand the mechanism of drug release from the nanoparticles, the 196 

data were treated according to the Korsmeyer-Peppas model (Peppas, 1985) described 197 

by Equation 3. 198 

                             199 

(3) 200 

where Qt is the amount of drug released at time t, Q0 is the amount of drug in the 201 

solution, k is a kinetic constant and n is the release exponent, which, according to the 202 

resulting numerical values, characterizes the mechanism of drug release. The 203 

  Qt        = kt n     

  Qo 
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linearization of Equation 3 through the construction of ln Qt/ Q0 as a function of lnt, 204 

provides the release exponent (n) and constant release (k). 205 

2.8 In vitro permeation assay 206 

Vertical Franz-type diffusion cells (n=5) with a diffusional area of 1.77 cm2 207 

were used for the permeation study. The skin used in the tests was taken from the dorsal 208 

surface of pig ears and kept refrigerated at -80°C until use. The skin was carefully 209 

placed between the donor and receiver compartment of each cell, the latter of which was 210 

filled with 7 mL of phosphate buffer solution (pH 7.4), so that the dermis was in direct 211 

contact with this medium. The temperature was maintained at 37°C with stirring at 400 212 

rpm. 213 

Permeation assay was prepared as follows: A volume of 200 µL of the ACG-214 

DDA-NPs formulation in phosphate buffer (pH 7.4) at 0.5 mg/mL was placed in the 215 

donor compartment. Aliquots (1.5 mL) were withdrawn at predetermined periods and 216 

analyzed by high performance liquid chromatography (Sintov, et al (2006). For this 217 

purpose we used a MERCK HITTACHI L-7000 chromatograph with a UV detector (L-218 

7400 LACHROM) at 276 nm and a C18 reverse phase column (250 x 4.6 mm) with a 219 

particle size of 5μm. The mobile phase consisted of a mixture of acetonitrile: water with 220 

0.1% phosphoric acid (98:2 v/v) with a final pH of 3.5. The chromatography was 221 

performed at room temperature with a flow rate of 0.6 ml min-1 and automatic injection. 222 

The same amount of buffer was added to keep the volume constant and the free 223 

DDA was also measured in order to compare the permeation profile. The data were 224 

expressed as the amount of drug permeated by the surface area of the skin (µg/cm2).  225 

 226 

2.9  Cytotoxicity test  227 



Page 10 of 33

Acc
ep

te
d 

M
an

us
cr

ip
t

The cell line used in this study was an oral squamous cell carcinoma (OSCC) 228 

obtained from the American Type Culture Collection (ATCC, Manassas, VA). Cells (5 229 

× 10 4 cells/mL) were grown in 75 cm2 flasks on 96-well plates and maintained in 230 

Dulbecco's modified Eagle medium (DMEM) supplemented with 10% fetal bovine 231 

serum (FBS), 1% L-glutamine, 1 % penicillin-streptomycin and 0:25% amphotericin B. 232 

The cells were treated with ACG-NPs, ACG-DDA-NPs and DDA at different 233 

concentrations for 3 h in an incubator (5% CO2 at 37 °C, humidified atmosphere of 234 

33%). Control cells were incubated with culture medium alone. After 24 h, DMEM 235 

without phenol red and 3-(4,5-dimethylthiazol-2yl)-2,5-diphenyl tetrazolium bromide 236 

(MTT) were added to each well and the plates were incubated for 4 h at 37°C (5% CO2, 237 

humidified atmosphere of 33%).The formazan crystals formed were dissolved in 2-238 

propanol and evaluated at 560 and 690 nm using a Safire2 multiplate reader. 239 

2.10 Statistical analysis 240 

Statistical analyses were performed applying one-way ANOVA and the Tukey 241 

test using Prisma software. All data reported in the tables and figures are expressed as 242 

the mean ±SEM of three independent experiments. Statistical significance for this study 243 

was considered as p<0.05. 244 

 245 

3.0 Results and Discussion 246 

The acetylated polysaccharides were characterized by infrared spectroscopy and 247 

according to the spectra in the infrared region, the intensity of vibrations at 3400 cm-1 248 

present in cashew gum (CG) decrease as the acetyl groups are inserted (Fig. 1 a). The 249 

absorption bands at 1375 cm-1 and 1752 cm-1 are typical of ester groups demonstrating 250 

the acetylation of the polymer (Fig. 1 b). The acetylated polysaccharide shows yield of 251 
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65% and the same degree of substitution (2.8) observed previously by Pitombeira et al. 252 

(2015), and  calculated using  the  1H-NMR spectra (figure not shown). 253 

Several polysaccharides like dextran, chitosan and pululan have been chemically 254 

modified to improve their physico-chemical, mechanical or chemical-biological 255 

properties, expanding the possibilities of using it in new materials (Lemarchand, Gref, 256 

Couvreur, 2004). In the last decade there has been increased interest in developing these 257 

modified polysaccharides for the synthesis of biodegradable nanoparticles. Due to the 258 

fact that these structures showed many advantages for biomedical applications such as 259 

drug protection and the ability to control its release (Rodrigues et al., 2003; Leonard et 260 

al., 2003; Chourasia and Jain, 2004; Chourasia et al., 2006; Singh and Kim, 2007; 261 

Zhang et al., 2009). 262 

3.1 Characterization of ACG nanoparticles  263 

Certain variables determine the success of nanoparticle synthesis and affect the 264 

physico-chemical properties of the nanoparticles obtained.  These include the conditions 265 

under which the organic phase is added to the aqueous phase and the concentration of 266 

the material involved (Rao and Geckeler 2011). 267 

 The NPs prepared by dialysis using acetone as the solvent had larger particles 268 

(302 nm) than those obtained using DMSO as solvent (179 nm). NPs synthesized by 269 

nanoprecipitation showed smaller average size (79.37 nm) compared to those 270 

synthesized by dialysis (302 nm), however a more negative zeta potential and smaller 271 

polydispersity index (PDI) values were observed for NPs synthesized by dialysis (Table 272 

1).  According to Mohanraj & Chen (2006), values lower than 0.2 for the polydispersity 273 

and above 30 mV for the zeta potential (in module) indicate good colloidal stability in 274 

solution. Thus, the particles prepared by dialysis presented better colloidal stability than 275 

those prepared by nanoprecipitation.  276 
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Under similar conditions, for NPs of dextran hydrophobically modified and 277 

with ibuprofen incorporated, Horning, Bunje & Heinze (2009) reported particle sizes of 278 

309 nm obtained through dialysis and 77 nm for synthesis via nanoprecipitation. These 279 

results are quite similar to those observed in the study reported herein. Figure 2 shows 280 

the particle size distribution for nanoparticles with and without the drug. In Figure 3 it is 281 

possible to observe the SEM image of ACG NPs. The image shows spherical particles 282 

and the sizes determined by SEM were in the ranges of 150-280 nm and 300-450 for 283 

DDA ACG NP and ACG nanoparticles, respectively. 284 

 For both methods investigated, the addition of the drug decreases the 285 

polydispersity index. No tendency in relation to the particle size was observed on 286 

changing the nanoparticle:DDA ratio (Table 2). On applying the nanoprecipitation 287 

method, a significant increase in particle size (p<0.001) was observed for all 288 

nanoparticle:DDA ratios investigated, whereas in the case of dialysis a significant 289 

reduction in the particle size was observed for a nanoparticle:DDA ratio of 10:1, and for 290 

other ratios no statistically significant variation was observed  (Table 2).  291 

Increasing the nanoparticle:drug ratio to 10:5 promoted a decrease in the 292 

encapsulation efficiency (%EE). For the lowest drug concentration (10:1) the amount 293 

incorporated was higher than 60% for both methods (Table 2).  With respect to the drug 294 

loading (DL), the highest value was obtained for a nanoparticle:drug ratio of 10:2 for 295 

both methods, although this ratio did not provide the highest encapsulation efficiency in 296 

the case of the dialysis method. Using dialysis and nanoprecipitation, Horning, Bunjes 297 

& Heinze (2009) obtained the same %EE (46.5%) for both methods.  However, in other 298 

studies, lower values for the incorporation of the drug into NPs synthesized through 299 

dialysis were noted, for instance, Shi & Shoichet (2008) observed a DL of <1% and 300 

Ericco et al. (2009) reported a DL of 2.2%. 301 
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Therefore, based on the results obtained for particle size, zeta potential, yield 302 

and %EE, the nanoparticles produced by the dialysis method with a ACG-NPs:drug 303 

ratio of 10:1 were chosen for the in vitro release and permeation studies as well as for 304 

cell viability assays.  305 

 306 

3.2    Cytotoxicity  307 

Figure 4 shows the in vitro cytotoxicity of the ACG-NPs and ACG-DDA-NPs 308 

using the previously grown OSCC cell line as described above. Nanoparticles in 309 

different concentrations were added to the cell suspension and left for 24 h at 37°C. The 310 

cell viability was subsequently measured using the MTT assay (Fig. 4). The 311 

nanoparticles (with or without the DDA) did not show any basal toxicity up to a 312 

concentration of 150 µg/mL. Recently, similar results were obtained 313 

for polymeric modified NPs, with and without doxorubicin, under physiological 314 

conditions (Thambi et al., 2014). 315 

Another study using 10 μg/ml of methotrexate indicated that there was no 316 

significant difference between the effects of the free drug and the drug incorporated in 317 

chitosan nanoparticles on tumor cells of the MCF-7 lineage and non-tumor cells 318 

(Nogueira et al., 2013). 319 

However, it’s possible to see that a slight reduction in cell viability in the 320 

presence of acetylated cashew gum, even if this difference is not significant, this may be 321 

due to cell line type, the dosage or the chemical composition of the gum.  Sarika et al. 322 

(2015) developed Arabic gum-curcumin conjugate micelles (GA-cur), and evaluated 323 

cytotoxicity by MTT assay using on MCF-7 and HepG2 cells. At concentration of 3.125 324 

g/mL show non cytotoxic to MCF-7, but cytotoxic was observed for HepG2 cells. 325 

Rigopoulou et al. (2012) reported that the presence of galactose moiety in the structure 326 
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of gum arabic can selectively identify asialoglyco protein receptor (ASGPR) on the 327 

surface of hepatocytes. 328 

David et al. (2015), reported the cell viability studies when MiaPaCa2 cells were 329 

incubated with quercetin-loaded chitosan nanoparticles, blank chitosan nanoparticles 330 

and free quercetin. Blank chitosan nanoparticles did not exhibit significant changes in 331 

the cell viability. In addition, no significant difference in cell viability was observed for 332 

free quercetin between 10 and 100 μM. In comparison, quercetin-loaded chitosan 333 

nanoparticles exhibited significant reduction in the cell viability in a dose-dependent 334 

manner. 335 

3.3    Release kinetics and in vitro permeation  336 

The drug release was analyzed by diffusion through a dialysis membrane in 337 

phosphate buffer solution.  Figure 5A, 5B shows the release profile for the anti-338 

inflammatory drug (DDA) encapsulated in ACG nanoparticles and free DDA.  It can be 339 

observed that the DDA was released from the ACG-NPs in a controlled manner, with a 340 

burst effect within the first 5 h followed by a more uniform release up to 24 h, after 341 

which a release of around 60% was achieved. Similar results were observed for sulfated 342 

chitosan NPs loaded with curcumin, with an average NP size of 220 nm and a 343 

maximum release rate of 70% (Anitha et al., 2011).  Another study showed similar 344 

results for acetylated pullulan NPs loaded with epirubicin, with NPs of > 200 nm and 345 

controlled release rates of up to 60% (Zhang et al., 2009).  Although Martins et al. 346 

(2012) reported a release of less than 20% for heparin from chitosan microparticles they 347 

obtained the release profile in two steps. The biphasic release behavior is consistent to 348 

the results obtained by Chin et al., (2014) and Ayadi at al., (2016).  These authors 349 

verified that the initial fast release was due to the presence of drug adsorbed onto the 350 

nanoparticle surface or held close to it.  351 
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Liu and He (2015) reported the release of aspirin and probucol drugs from 352 

modified chitosan nanoparticles, both aspirin and probucol were released rapidly in the 353 

first 24h, and the release rate decreased significantly thereafter. The cumulative release 354 

amount of probucol was much higher than that of aspirin in the data range, which can be 355 

due the different interactions of aspirin and probucol with the modified chitosan 356 

nanoparticles matrix. 357 

In order to investigate the mechanism through which the drug was released 358 

from the nanoparticles the Korsmeyer-Peppas equation was applied as shown in Fig. 6 359 

A release exponent (n) value of 0.27 was obtained, indicating Fickian diffusion. The 360 

release of indomethacin from acetylated cashew gum also showed a Fickian diffusion 361 

mechanism (Pitombeira et al., 2015). 362 

Similar release profiles have also been observed by using other diclofenac 363 

release systems. For instance, Liu et al. (2010) reported a slow release rate of diclofenac 364 

when encapsulated in solid lipid nanoparticles. Silva et al. (2014) confirms the capacity 365 

of bacterial cellulose (BC) membrane loaded with diclofenac to provide a sustained 366 

release, which can be successfully combined with a good biocompatibility and 367 

absorption properties. 368 

The transdermal permeation profile for the drug incorporated into ACG-DDA-369 

NPs compared to free DDA can be observed in Fig. 7. Both the free drug and the drug 370 

associated with the nanoparticles reached a permeation of approximately 1.5 µg/cm2 in 371 

six hours of testing, which is equivalent to an average of 90% permeated DDA. 372 

However, the nanostructured system demonstrates a more controlled permeation profile 373 

which is maintained over time. 374 

Sintov & Botner (2006) also confirmed the controlled and effective transdermal 375 

penetration of sodium diclofenac from a microemulsion in vitro. However, in contrast to 376 
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the results obtained in this study, they observed significantly higher permeation values 377 

for the microemulsion compared with the application of the drug in aqueous solution. 378 

However, it should be noted that sodium diclofenac, unlike diethylamine, does not show 379 

effective transdermal permeation due to its physico-chemical properties. 380 

Minghetti et al. (2007) investigated the effects of three skin penetration 381 

enhancers, on four diclofenac salts, the maximal amount of diethylamine diclofenac 382 

permeated from the aqueous vehicles were 2–4 fold greater than the amounts permeated 383 

when compared with all other salts and vehicles. The possibility of diclofenac 384 

micellization in aqueous systems was considered as one of the contributors to the 385 

favorable skin penetration. 386 

Sodium diclofenac was also incorporated into different nanoemulsions and 387 

once again it was possible to verify that nanoemulsions are effective accelerators for the 388 

permeability of the drug through the skin. The nanosize of the formulations was 389 

suggested by the authors as a permeation enhancer (Piao et al., 2007). Likewise, PLGA 390 

and chitosan were used to prepare a bilayered system of nanoparticles for the 391 

simultaneous topical delivery of two anti-inflammatory drugs and it was found that the 392 

skin permeation of the nanostructures was much higher when compared to the 393 

commercial topical gel (Shah et al., 2012). 394 

 395 

4. Conclusions  396 

 397 

In this study, acetylated cashew gum nanoparticles were successfully prepared 398 

via two different methods. The nanostructures were incorporated in DDA and showed 399 

great potential as carriers for controlled drug release systems as well as transdermal 400 

permeation promoters in vitro. The high rates of cell viability indicate that the NPs offer 401 
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good biocompatibility, with and without the drug incorporated. This means that ACG 402 

may be useful for the delivery of anti-inflammatory drugs, however comparative studies 403 

with a commercial formulation and in vivo assays have yet to be performed. 404 
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Table 1: Characterization of Acetylated Cashew Gum Nanoparticles  652 

 

Method  

 

Size (nm) 

 

ζ(mV)a 

 

PDIb  

 

Yield (%) 

Nanoprecipitation 79.37±0.608 -20.2±1.52 0.354±0.033 24 

Dialysis 302.0 ±0.971 - 35.9 ± 2.49 0.187 ± 0.025 80 

a: zeta potential 653 
b: polydispersity index  654 

 655 

 656 

 657 

 658 

 659 

Table 2: Influence of the incorporation of the drug in nanoparticles 660 

 

Method 

 

Nanoprecipitation 

 

Dialysis 

 

ACG:DDAa 

 

10:1 

 

10:2 

 

10:5 

 

10:1 

 

10:2 

 

10:5 

Sizeb  90.2±1.125** 125.9±0.776** 96.48±0.752** 262.9±4.963** 304.7±5.139 291.9±6.799 

ζ(mV)c -18.7±1.960 -18.8±1.410 -23.7±1.040 -31.5±0.693 -32.1±1.110 -32.9±0.741 

PDId 0.257±0.003 0.126±0.027 0.219±0.017 0.134±0.003 0.160±0.032 0.149±0.046 

DLe (%) 6.6 12.1 1.8 5.9 8.2 6.4 

EEf (%) 72.6 72.6 5.4 65.5 49.2 19.4 

 661 
a: acetylated  cashew gum: diclofenac diethylamine ratio 662 
b: average size of nanoparticles  663 
c: zeta potential 664 
d: polydispersity index  665 
e: drug loaded 666 
f: encapsulation efficiency 667 
**: p<0.001 compared to the drug-free nanoparticles 668 
 669 
 670 
 671 
 672 
 673 
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 674 
 675 

 676 
 677 

Figure captions 678 
 679 

 680 

Figure 1.  FTIR spectra of cashew gum and ACG (A) Schemes of the acetylated cashew 681 
gum (B). 682 
 683 

Figure 2. Nanoparticle size distribution of ACG-NPs and DDA-ACG-NPs (A) 684 
synthesized by nanoprecipitation and (B) synthesized by dialysis. (nanoparticle:drug 685 
ratio 10:1)  686 

Figure 3. SEM images of ACG nanoparticles without (B) and with DDA (A). 687 

Figure 4. Cell viability for OSCC where CT = control, ACG-NPs = acetylated cashew 688 
gum nanoparticles, DDA-ACG-NPs = acetylated cashew gum nanoparticles loaded with 689 
diclofenac diethylamine: (A) according to the polymer concentration (1 = 50 µg/ml, 2 = 690 
75 µg/ml, and 3 = 100 µg/ml and 4 = 150 µg/ml) and (B) according to the drug 691 
concentration (n=3). 692 
 693 
Figure 5. In vitro release profile for diclofenac A. DDA-ACG-NPs B free DDA (n=3) 694 

Figure 6. Mechanism associated with in vitro release of diclofenac from DDA-ACG-695 
NPs, according to the Korsmeyer-Peppas model (n =3). 696 

Figure 7. Percutaneous penetration of DDA through pig skin after application of the 697 
drug as free DDA and in DDA-ACG-NPs (n=5). 698 
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