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A B S T R A C T

In this work, we propose a novel approach to produce a high-strength epoxy nanocomposite using ionic liquids
facilitated dispersion of chitin nanowhiskers (CNWs). Samples with 0−3 wt% CNWs and 1 wt% of [Emim][OAc]
were fabricated by mixing, casting, and curing. The morphological observations of the ethanol/ionic liquid
suspensions by TEM indicated that [Emim][OAc] helped in dispersing the CNWs. The tensile, impact, dynamical
mechanical properties, and thermal stability of the composites were further evaluated to access the reinforcing
effect of CNWs. Increase of 35 % tensile strength, 175 % toughness and 90 % impact strength were observed
upon addition of 2 wt% of CNWs. Thermal stability of the epoxy was not affected by the addition of CNWs. The
SEM observations of the composites evidenced that the fracture mechanisms had changed upon CNWs addition.
This work shows the advantage of the novel approach using ionic liquids as nanofiller dispersant in fabricating
CNWs nanocomposites.

1. Introduction

Nanocomposites have garnered tremendous attention of both in-
dustry and academia for either their enhanced mechanical strength1,
electrical conductivity, thermostability or sustainability. To date, sev-
eral types of nanofillers, such as carbon nanotubes, graphene nano-
platelets, nanoclays and nanocellulose, have been added to various
polymers to obtain nanocomposites (Anwer, Wang, & Naguib, 2019;
Choi & Jeong, 2019; Feng, Xie, & Zhong, 2014; Miyagawa, Misra, &
Mohanty, 2005; Radich, McGinn, & Kamat, 2011; Withers et al., 2015;
Wu, Xie, Zhang, Jia, & Zhang, 2019; Zakaria et al., 2019). Among these
nanofillers, chitin, a natural polymer, has been viewed as a very in-
teresting material due to its natural abundance and mechanical prop-
erties that rival the ones of synthetic expensive nanofillers (Gopalan
Nair & Dufresne, 2003a, 2003b; Nair, Dufresne, Gandini, & Belgacem,
2003). Chitin is a biopolymer that can be found in exoskeleton of
crustacean, cuticle of insects, and cell walls of fungi. It is the second
most abundant natural polymer after cellulose. The chitin molecule,

which belongs to the polysaccharide family, presents different crystal-
line polymorphs including α-, β-, and γ-chitin depending on the sources
(Kurita, 2001; Li, Revol, & Marchessault, 1997; Morin & Dufresne,
2002). α-chitin is the most abundant one and originates from crusta-
cean shells, β-chitin is obtained from the pen of squids (Fan, Saito, &
Isogai, 2008; Ifuku et al., 2009; Jang, Kong, Jeong, Lee, & Nah, 2004)
and γ-chitin, the least abundant can be found in the stomach of Loligo.
In general, chitin molecules are very rigid, group themselves in a par-
allel fashion, adopting a molecular conformation that will vary ac-
cording to the type of crystals (α, β or γ). These assemblies of parallel
chains are arranged to form sheets which further wrap up to rod-like
structures with a length of 200−500 nm and a diameter of 10−20 nm
resulting in so-called chitin nanowhiskers (CNWs) (Blackwell, 1969).
Chitin nanowhiskers (CNWs) present a high modulus of 200 GPa and
large aspect ratio, making them good candidates for potential usage for
mechanical reinforcement in nanocomposites (Chen et al., 2018; Guo,
Duan, Cui, & Zhu, 2015; Jun et al., 2020; Liu, Liu, Yang, Luo, & Zhou,
2018; Zhou et al., 2015). However, and independent of the crystalline

https://doi.org/10.1016/j.carbpol.2020.116746
Received 11 May 2020; Received in revised form 6 July 2020; Accepted 8 July 2020

⁎ Corresponding author.
E-mail addresses: jintian.wang@mail.utoronto.ca (J. Wang), zq.chen@mail.utoronto.ca (Z. Chen), aaron.guan@bocotechnology.com (A.Q. Guan),

nicoler.demarquette@etsmtl.ca (N.R. Demarquette), naguib@mie.utoronto.ca (H.E. Naguib).

Carbohydrate Polymers 247 (2020) 116746

Available online 13 July 2020
0144-8617/ © 2020 Elsevier Ltd. All rights reserved.

T

http://www.sciencedirect.com/science/journal/01448617
https://www.elsevier.com/locate/carbpol
https://doi.org/10.1016/j.carbpol.2020.116746
https://doi.org/10.1016/j.carbpol.2020.116746
mailto:jintian.wang@mail.utoronto.ca
mailto:zq.chen@mail.utoronto.ca
mailto:aaron.guan@bocotechnology.com
mailto:nicoler.demarquette@etsmtl.ca
mailto:naguib@mie.utoronto.ca
https://doi.org/10.1016/j.carbpol.2020.116746
http://crossmark.crossref.org/dialog/?doi=10.1016/j.carbpol.2020.116746&domain=pdf


structure in which they are involved, chitin molecules are closely linked
via hydrogen bonding resulting in a very poor solubility in most
common solvents and very difficult dispersion in polymeric systems
(Araki & Kurihara, 2015; Coltelli et al., 2019; Zhang, Wei, Huang, Feng,
& Chang, 2014) These links are even stronger in the case of α-chitin
because of the conformation adopted by the polymer chains within the
crystals turning the dispersion of this nanofiller a challenging problem
if one wants to harness the properties that these fillers could impart to
the composite.

Chitin nanocomposites that incorporating chitin nanofillers into
diverse matrix such as sorbitol polyglycidyl ether (SPE), poly (vinyl
alcohol) PVA and thermoset DGEBA epoxy resin (Anwer, Wang, Guan,
& Naguib, 2019; Irvin, Satam, Carson Meredith, & Shofner, 2019;
Shibata, Enjoji, Sakazume, & Ifuku, 2016) have been successfully ob-
tained by several authors. However, limited improvement on mechan-
ical properties, upon addition of chitin were observed. In some cases, it
has even been observed that the addition of chitin resulted in a decrease
of mechanical of properties (Shibata et al., 2018). For that reason chitin
nanofibers have been considered inadequate to reinforce high tensile
strength (40 MPa) cured resins although previous results of our group
showed that the addition of chitin could result in an increase of tensile
strength of epoxy resin with around 70 MPa (Anwer, Wang, Guan et al.,
2019). The underperformance of the composites obtained was often
attributed to the excessive agglomeration of CNWs as chitin was merely
dispersed in the solution during the fabrication process. Proper strate-
gies to disperse CNWs within the solution to be polymerized should
therefore be explored.

Multiple dispersion methods have been developed over the years,
including sonication and addition of dispersant (Anwer, Wang, &
Naguib, 2019; Gao et al., 2019; Kumar, Ghosh, Yadav, & Kumar, 2017;
Li, Gao, Zhao, Sun, & Li, 2017). More recently, ionic liquids have been
reported as an effective dispersant especially for carbon-based nano-
materials (Fukushima et al., 2006; Lu, Yan, & Texter, 2009; Sanes,
Saurín, Carrión, Ojados, & Bermúdez, 2016; Shamsuri & Daik, 2015;
Xiang, Suo, Xu, & Hu, 2018; Yousfi, Livi, & Duchet-Rumeau, 2014). As
an example, they have been used successfully to disperse silica in
rubber (Donato, Donato, Schrekker, & Matějka, 2012), (resulting in
materials with improved toughness), nanotubes (Hameed et al., 2013)
and graphene (Liu, Qiu, Du, Zhao, & Wang, 2018) to obtain conductive

nanocomposites. Ionic liquids are organic salts whose melting points
are below a certain temperature (usually about 100 °C) resulting from
the poor coordination of their constituting ions. They are known for
their excellent thermal and chemical stability and non-flammability.
They have been used as processing media for dissolving and re-
generating chitin (Wu, Sasaki, Irie, & Sakurai, 2008). However, we
could not find any report in the literature, which used ionic liquids to
disperse chitin within polymers. Although chitin nanowhiskers has
outstanding mechanical properties and great potential for composites
reinforcement, the intrinsic agglomeration of chitin results in the har-
ness of such properties still challenging as mentioned. In this study,
chitin epoxy composites were obtained adding ionic liquid to a CNWs
suspension within DGEBA resulting in a liquid material that was further
cured. 1-Ethyl-3-methylimidazolium acetate, an imidazolium ionic li-
quid denoted as [Emim][OAc] was chosen because it has been shown
that it could be a good candidate to dissolve chitin (Qin, Lu, Sun, &
Rogers, 2010). With the capability of dissecting chitin molecules,
[Emim][OAc] applied to CNWs in polymer matrix may play an im-
portant role for chitin nanofiller dispersion. We hypothesize that the
interaction between [Emim][OAc] and chitin may diminish chitin’s
intrinsic agglomeration and thus facilitate the CNWs dispersion in
epoxy composites for improved mechanical properties. The composites
were tested for their mechanical as well as thermal properties which
were correlated to their morphology. A phenomenological model ex-
plaining the interactions between the components of the composites
was then proposed.

2. Materials and methods

2.1. Materials

The ionic liquid 1-Ethyl-3-methylimidazolium acetate ([Emim]
[OAc]) was purchased from Ionic Liquids Technologies Gmbh
(Heilbronn, Germany) with the 1-Ethyl-3-methylimidazolium and
acetate content over 99.3 % and 99.9 % respectively. This ionic liquid
was chosen for its ability to properly disperse chitin, and its functional
groups that enable the curing of epoxy (Zhou, Mingyuan, Jin, & Wang,
2005). The chitin nanowhiskers (CNWs) (specific surface area of
200−300 m^2/g and aspect ratio of 20–50) used with the same

Scheme 1. Chemical structures of DGEBA, [Emim][OAc] and chitin.
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polymorphs as that has been previously reported (Anwer, Wang,
Naguib, Naguib et al., 2019; Chi-Yan Li, Sun, Guan, & Naguib, 2016)
were obtained from BOCO Technology (Ontario, Canada) in the form of
ethanol suspension. The weight concentration of CNWs was 8 wt% as
confirmed by TGA. The epoxy resin EPON828, a high purity type of
DGEBA obtained by reaction of epichlorohydrin and bisphenol A, was
purchased from Hexion (Ohio, United States). All chemicals listed were
used as received without further purification.

Schemes 1 (a–c) present the chemical structures of the DGEBA,
[Emim][OAc], chitin nanowhiskers that used in the present work.

2.2. Fabrication methodology

The CNWs ethanol suspension was first characterized by TGA (Q50
TA Instrument) to measure the solid content of CNWs. For that the
samples were heated at a temperature of 150 °C which was held con-
stant for 20 min. To obtain the composites samples, the CNWs ethanol
suspension containing the desired amount of CNWs was added drop-
wise to the DGEBA epoxy, the mixture was stirred at 300 rpm for at
least 5 h at a temperature of 70 °C for all the ethanol to evaporate. A
transparent epoxy chitin suspension was then obtained. The ethanol
volatile content leftover was confirmed using TGA to be less than 0.5 %
with respect to the amount of epoxy. Afterward, [Emim][OAc] was
added to the uniform chitin epoxy suspension. The mixture was then
stirred at 100 rpm at a temperature 50 °C until a homogeneous liquid
was obtained. The solution was degassed in a vacuum chamber for 30
min to remove the air bubbles and then casted in customized two-part
rectangular glass molds to a sheet. The solution was prevented from
oxidation and placed in an oven at 100 °C for 24 h to complete the cure.
The reaction mechanism between epoxy resin with imidazoles has been
examined by some previous literature and is presented in Scheme 2
(Binks, Cavalli, Henningsen, Howlin, & Hamerton, 2018; Bodnar,
Hartmann, & Borbely, 2005; Ham et al., 2010; Jíšová, 1987; Maka,
Spychaj, & Pilawka, 2012; Vashchuk, Fainleib, Starostenko, & Grande,
2018). The imidazole groups, under heating condition, tend to open up
the epoxy ring and induce the etherification of epoxy resin to form
stable compounds that polymerize with sufficient epoxide groups. For
the neat epoxy composites without CNWs, the whole process just
skipped the CNWs ethanol suspension mixing step. The completion of
curing and the stability of the composites were further confirmed with
no mass loss or ILs leaching after solvent treatment by water, ethanol,
acetone and dimethylformamide. Laser cutting was used to obtain
various specimens according to each testing standard. The concentra-
tion of [Emim][OAc] was kept constant as 1 wt% for samples with
different CNWs loadings in DGEBA. Table 1 summarizes the naming
policy for all nanocomposites fabricated in this study.

2.3. Morphological characterization

The CNWs ethanol suspensions with or without ionic liquids were
dried and loaded on CF200-Cu grids. They were further observed by
TEM using a FEI Tecnai 20 TEM (magnification x200k) (Field Electron
and Ion (FEI) company, Hillsboro, Oregon). These observations were

carried out to investigate the dispersing effect of the [Emim][OAc]. The
fractures of the composites were obtained by 5 min of immersion in
liquid nitrogen followed by mechanical breaking and then sputter
coated and carbon pasted. Their morphology was observed by SEM
using a JEOL JSM 1000 SEM (magnification x15k) (JSM USA, Inc.,
Peabody, Massachusetts).

2.4. Tensile testing

Tensile tests were carried out according to the ASTM standard D638
using a Universal Testing Machines Instron 5848 (Instron, Norwood,
Massachusetts). Samples were laser cut to dumbbell shape following the
TypeV specimen dimensions and the loading rate was set at 5 mm/
minute.

2.5. Impact testing

Impact tests were performed using impact tester Instron Dynatup
(Instron, Norwood, Massachusetts) following ISO179 standard. The
Type I charpy flatwise samples were laser cut to bar shape with the
dimension of 80 mm (L) x10 mm (W) x3 mm (T). The span, namely the
distance between supporting and clamping, was set as 62 mm accord-
ingly. The average impact speed of 4.5 lb impact mass was about 1.7 m/
s which was adequate to induce complete fracture of specimens. The
Charpy impact strength, expressed in kilojoules per square meter, was
calculated with the following formula from the standard ISO179:

=a E
h b*

*10cU
c 3

(1)

Where Ec is the energy absorbed by the fracture specimens in joules, h is the
thickness of the specimens in millimeters, b is the width of the specimens in
millimeters

2.6. Dynamic mechanical testing

Dynamic mechanical tests were performed using a dynamic me-
chanical analyzer DMA Q800 (TA Instruments, New castle, Delaware)
with the dual cantilever setup under temperature ramp of 3 °C/min to
160.00 °C with constant strain of 0.01 % at a frequency of 1 Hz. The
samples were prepared with the rectangular shape of 60 mm (L) x12
mm (W) x1.5 mm (T). The storage modulus, loss modulus and tan delta
were recorded to analyze the glass transition temperature.

Scheme 2. Curing mechanism of epoxy resin with imidazolium ionic liquids [Emim][OAc].

Table 1
Designation of [Emim][OAc], CNWs and DGEBA nanocomposites and corre-
sponding composition used.

Designation wt% [Emim][OAc] wt% CNWs wt% DGEBA

Neat 1 —— 99
0.75 wt% 1 0.75 98.25
1 wt% 1 1 98
1.5 wt% 1 1.5 97.5
2 wt% 1 2 97
3 wt% 1 3 96
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2.7. Thermogravimetric analysis

The thermal stability of the nanocomposites was studied via ther-
mogravimetric analysis TGA Q500 (TA Instruments, New castle,
Delaware). Samples less than 50 mg were cut from the sheets and
loaded on a platinum plate. The full cycle of testing had the tempera-
ture ramped from room temperature to 1000 °C at the rate of 20 °C/
minute under nitrogen environment.

3. Results

3.1. CNWs morphology and composites appearance

CNWs morphology and composites appearance. Fig. 1 presents the
typical aspects of chitin nanowhiskers ethanol suspension to which
[Emim][OAc] were not (Fig. 1a–c) or were added (Fig. 1d–f). Figures

with different magnification from x25k to x100k are presented for
clarification. The mass ratio of CNWs and [Emim][OAc] concentration
for the micrographs shown Fig. 1d–f is 2:1. It can be seen that upon
addition of [Emim][OAc], the size of the aggregates of CNWs decreases
tremendously, indicating that the [Emim][OAc] could play a role in
dispersing the fibers within the DGEBA. Fig. 2a shows the ruby ap-
pearance of both [Emim][OAc] cured neat epoxy samples (on the left)
and samples with 3 wt% CNWs. For comparison, neat epoxy cured with
amine hardener triethylenetetramine (TETA) (Fig. 2b) and that with
0.75 wt% CNWs (Fig. 2c) from our previous study are presented
(Anwer, Wang, Guan et al., 2019). Neat epoxy sample cured with TETA
is absolute transparent while the addition of CNWs leads to the
brownish appearance. In addition, the testing results from our previous
study have demonstrated the occurrence of chitin agglomeration at
0.75 wt%. However, for [Emim][OAc] cured samples, there is no dif-
ference observed between neat samples and that with 3 wt% CNWs.

Fig. 1. CNWs morphology characterization under TEM: (a-c) images of CNWs untreated with [Emim][OAc] in which scale bars are 1 μm, 0.5 μm and 200 nm,
respectively (d-f) images of CNWs treated with [Emim][OAc] in which scale bars are 1 μm, 500 nm and 200 nm, respectively.

Fig. 2. (a) [Emim][OAc] cured epoxy (left) and [Emim][OAc] cured epoxy with 3 wt% CNWs (right) (b) TETA cured neat epoxy (c) TETA cured epoxy with 0.75 wt%
CNWs.
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Also, our previous studies also showed that it was impossible to disperse
adequately chitin in DGEBA once the concentration was above 0.75 wt
% as the viscosity was too high. These observations further indicate that

the EmimAc helps in the dispersion of CNWs with the epoxy.

3.2. Mechanical and impact properties

Fig. 3 presents the mechanical properties as extracted from tensile
data of the composites obtained in this work. Fig. 4 presents their im-
pact properties. The statistical comparison of both mechanical and
impact properties is presented in Table 2 as specific values with stan-
dard deviation. It can be seen that the addition of CNWs results in an
improvement of mechanical properties for concentrations of up to 2 wt
% CNWs. The addition of 2 wt% CNWs resulted in an increase of
modulus of 8%, tensile strength of 35 %, strain of 80 %, energy to
failure of 175 % increase and 90 % increase of impact strength. These
increases are much larger than the ones that were obtained in our
previous work. It was shown that when CNWs were incorporated in
TETA cured epoxy from 0.25 wt% to 0.75 wt%, the optimal properties
were achieved at 0.25 wt% CNWs loadings with Young’s modulus,
tensile stress and energy to failure increasing by 23 %, 12 %, and 2.5 %
respectively (Anwer, Wang, Guan et al., 2019). Furthermore, when
CNWs was added to TETA cured epoxy, the increase of tensile strength
was accompanied with a decrease of tensile strain and impact strength.
This was attributed to a worse dispersion of CNWs within the epoxy and
was supported by corresponding SEM and TEM images. However, when
[Emim][OAc] was used, all mechanical properties are increasing. The
increase of tensile strength is not accompanied by the decrease of
tensile strain as is normally observed when one adds fillers to a
polymer. Interestingly, the Young modulus of the composites did not
increase much upon addition of CNWs which is unexpected as chitin
presents a much higher tensile modulus than the epoxy. This could be
attributed to a plasticizing effect of the ionic liquid in thermoset ma-
terials37. The presence of the ionic liquid could therefore offset the
influence of CWN. For concentrations of CWN of 3 wt% a decrease of all
mechanical properties is observed. Causes to explain this phenomenon
will be further addressed in the discussions. Furthermore, the chitin
agglomeration limited the CNWs loading to 0.75 wt% in the manner of
sample fabrication of TETA cured epoxy. However, it was possible to
incorporate up to 3 wt% CNWs when [Emim][OAc] was used.

3.3. Surface morphology of the composites

Fig. 5 presents the scanning electron micrographs of the cryo-
fractures of the pure epoxy composites and of 5 composites that were
obtained with the addition of [Emim][OAc] with 0.75, 1, 1.5, 2, 3 wt%
CNWs. Figures are presented with the magnification of x5k and all scale
bars of 5 μm for comparison. It can be seen that upon addition of CNWs,
the fracture surface of the samples is altered. Whereas in the case of the
neat epoxy the plastic deformation of the matrix dominated the fracture

Fig. 3. Tensile mechanical properties: (a) stress-strain curves (b) Young’s
modulus (c) tensile strength (d) tensile strain (e) energy to failure.

Fig. 4. Charpy impact properties of the nanocomposites.
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behavior and granted most of the impact strength, the addition of CNWs
suddenly altered the fracture surface with sags and crests caused by the
fiber debonding. This fiber debonding could be at the origin of this
improvement of impact strength. The energy dissipation of fiber pullout
and breaking might be insignificant since the size and aspect ratios of
CNWs constrained their participation in major crack propagation
(Kausar & Taherian, 2019; Suo, 1992). With the concentration of CNWs
increasing, the fracture surfaces showed denser sags and crests implying
that more fiber debonding happened in a certain interfacial region.
These results indicate that fiber debonding could be at the origin of the
increased impact strength. The SEM images of cryofracture features for
the TETA cured epoxy with or without CNWs from our previous study

had shown similar trend of morphologies change. The only difference
that was observed was a poorer dispersion of the chitin fibers in the
case of a composite to which 0.75 wt% chitin fibers had been added
(Anwer, Wang, Guan et al., 2019).

3.4. Thermal properties

Fig. 6 presents the glass transition temperatures of the different
composites obtained in this work evaluated by DMA. It can be seen that
upon addition of CNWs, the glass transition temperature increased for
concentrations of CNWs above 1 wt% probably as a result of the chain

Table 2
Statistical comparison of the mechanical properties and impact properties.

Designation Young’s modulus (MPa) Tensile strength (MPa) Tensile strain (mm/mm) Energy to failure (J/cm^3) Impact strength (J/m^2)

Neat 948.83± 8.70 69.76± 2.93 0.10±0.0048 4.07± 0.36 68.17± 3.83
0.75 wt% 978.92± 20.89 84.33± 0.17 0.12±0.0067 5.90± 0.43 90.70± 6.07
1 wt% 956.33± 15.28 89.59± 2.47 0.15±0.012 8.08± 1.08 120.44± 1.93
1.5 wt% 967.62± 7.93 91.08± 3.09 0.16±0.017 9.14± 0.55 124.03± 2.84
2 wt% 1028.06±37.31 93.80± 2.06 0.18±0.0098 11.18± 1.08 130.48± 1.21
3 wt% 946.70± 13.34 83.92± 2.00 0.13±0.011 6.43± 0.85 115.48± 3.08

Fig. 5. SEM images of the cryofracture surface of the nanocomposites: (a) neat (b) 0.75 wt% CNWs (c) 1 wt% CNWs (d) 1.5 wt% CNWs (e) 2 wt% CNWs (f) 3 wt%
CNWs in which scale bars are all 5 μm.

Fig. 6. Glass transition temperature of the composites obtained in this work. Fig. 7. Thermogravimetric analysis of the samples studied in this work.
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mobility hindrance brought by the presence of CNWs. Although no
chemical reaction occurred between CNWs and the epoxy (as confirmed
by FTIR (Anwer, Wang, Guan et al., 2019)) the functional groups of
chitin and epoxy probably form hydrogen bonds and induce inter-
molecular forces that restrain the mobility of epoxy polymer chains.
The glass transition temperatures of the composites obtained in this
work in the presence of [Emim][OAc], are lower than the ones for
composites cured with TETA (Anwer, Wang, Guan et al., 2019). This
difference probably originates from the plasticizing effect of [Emim]
[OAc]. Initially, as the amount of [Emim][OAc] offset that of epoxy
when 0.75 wt% CNWs added, the glass transition temperature dropped
compared with neat [Emim][OAc] cured epoxy. Afterward, the hin-
derance of chain mobility from CNWs surpassed the plasticizing effect
of [Emim][OAc], the glass transition temperature increased with the
CNWs concentration.

Fig. 7 shows the mass loss as a function of temperature for the dried
chitin, pure epoxy, and composites. Thermal stability and degradation
analysis were performed via thermogravimetric analysis (TGA) for the
nanocomposites. Dried chitin was prepared via direct drying of chitin
ethanol suspension. The initial weight loss of dried chitin at 10 wt%
around 200 °C was considered trapped volatile content within the
CNWs structure. After that, there was a dramatic weight loss before 500
°C due to the decomposition of major polymer chains and side groups
such as acetyl and methyl groups (Moussout, Ahlafi, Aazza, &
Bourakhouadar, 2016). The final step of thermal degradation was as-
cribed to the destruction of pyranose ring and residual carbon
(Corazzari et al., 2015; Marroquin, Rhee, & Park, 2013). Due to the
small concentration of CNWs in the nanocomposites, the major thermal
degradation behavior overall is almost the same as the cured epoxy
matrix. There is slight difference shown on the weight residue as chitin
itself would degrade less than the epoxy matrix would. The degradation
onset (Fig. 7) was extrapolated by the major curve showing weight drop
around 450 °C and was similar for samples with different concentra-
tions of CNWs. Thus, the addition of CNWs did not influence the
thermal stability of the nanocomposites in terms of thermal degrada-
tion.

4. Discussion

The experimental results obtained in this manuscript showed that a
better dispersion of CNWs can be obtained when [Emim][OAc] is used
in the preparation of epoxy CNWs composites. When [Emim][OAc] was
used, the addition of CNWs did not result in a change of opacity of
epoxy samples for concentration of CNWs of up to 3 wt%. Conversely,
the addition of 0.75 wt% resulted in an increase of opacity of the
sample when no ionic liquid was used. Furthermore, the use of ionic
liquid enabled an increase of CNWs that can be added to the epoxy
samples. The enhanced dispersion of the CNWs also resulted in more
effective improvement of mechanical properties. However, the results
indicated that the concentrations of [Emim][OAc] vs CNW added to the
epoxy have to be optimized as once the CNWs increases above a certain
value (namely 3 wt% in this work), the ionic salt was unable to disperse
properly the CNWs. Both tensile and impact properties drew back at 3
wt% CNWs. This can probably be explained in terms of insufficient
functional ionic salt functional groups that can help disrupting the
abundant intra and intermolecular forces in CNWs effectively as will be
explain by the phenomenological model below.

Fig. 8 proposed a possible interaction mechanism between the
chitin, [Emim][OAc] and epoxy resin used in the present work. When
the ionic liquid is added to the chitin suspension, it is expected that the
anions of the chosen ionic liquid interact with the polar part domains of
the chitin (Kadokawa, 2019) and intercalate between the chitin mole-
cules. The ability of the salt to “break” the hydrogen bonds between the
chitin molecules to intercalate between them and form new bonds with
them can be attributed to the β-hydrogen bond basicity, an empirical
solvent denotation for quantitative comparison of dissolubility
(Yokoyama, Taft, & Kamlet, 1976) which in the case of the present salt
is fairly high (Qin et al., 2010). These interactions between the chitin
molecules and the salt could explain the ability of the later to disperse
the chitin within the DGEBA epoxy. The dispersion was kept within the
nanocomposite due to the ability of the ionic salt to cure the epoxy and
resulted in transparent materials. Therefore, the treatment of appro-
priate ionic liquids on CNWs in nanocomposites facilitated the nano-
filler dispersion and provided a new perspective for overcoming chitin’s

Fig. 8. Chemical scheme explaining the dispersing role of the ionic salt.
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intrinsic agglomeration in composites system for reinforcement.
Finally, the plasticizing effect of ionic liquids [Emim][OAc] com-

peted with hinderance effect of CNWs on the polymer chain mobility.
Thus, the glass transition of the composites dropped at 0.75 wt% but
increased with higher concentration of CNWs from 1 wt% to 3 wt%.
Moreover, the addition of CNWs did not influence the thermal stability
of the composites.

5. Conclusion

Dispersion of chitin nanofillers is still a challenging problem, when
producing nanocomposites, as they tend to agglomerate when added to
the resin. This work first time exploited the unique capability of ionic
liquids to separate chitin aggregation via intermolecular forces to dis-
perse CNWs in epoxy matrix. This work confirmed the hypothesis that
the treatment of a properly chosen ionic liquid on CNWs alleviated
chitin’s intrinsic agglomeration, allowing the dispersion of a larger
concentration of nanofillers (3 wt% vs 0.75 wt%) within the polymer
and greater improvement of mechanical properties. However, the ratio
of the ionic liquid to CNWs should be optimized as the ionic liquid acts
as a plasticizer of the resin. This paper has demonstrated the effective
dispersion from ionic liquids for the bio-based nanofiller CNWs, ex-
panding greatly the application potential of CNWs in other nano-
composites for reinforcement and the application of ionic liquids for
dispersion of other biopolymers in composites system. Furthermore, the
study has shown the reinforcement contributed by CNWs as nanofillers
in epoxy composites, which provided a strong candidate for replace-
ment of conventional nanofillers in epoxy industries.
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