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H I G H L I G H T S

• Epoxidized biomass eucommia gum
(EEUG) was successfully synthesized
by an interfacial reaction.

• EEUG/epoxy composite coatings with
1 wt% showed an improvement in the
tensile strength.

• EEUG/epoxy composite coatings with
1 wt% exhibited the outstanding an-
ticorrosion protection performance.

G R A P H I C A L A B S T R A C T

A R T I C L E I N F O

Keywords:
Eucommia gum
Interfacial reaction
Corrosion resistance
Epoxy coating

A B S T R A C T

The design and preparation of a long term effective anticorrosion coating in a large scale in the harsh en-
vironment is still an enormous challenge for the anticorrosion technology. Herein, Eucommia gum, a natural
biomass rubber material, had been epoxidized by a novel and green method involved in an interfacial reaction
using the water as a dispersant. Epoxidized biomass eucommia gum (EEUG) is utilized as a functional filler in the
synthesis of epoxy composite coating. The epoxy groups in the EEUG can react with the hardener, not only
resulting in the event dispersion of EEUG in the composite coating, but also leading to the formation of the much
richer crosslinking densities. A substantial improvement in the corrosion protection and the tensile strength were
obtained. For example, EEUG/epoxy composite coatings with 1 wt% EEUG still maintains excellent anticorrosion
performance with the high polarization resistance (Rf) values of 8.846× 108Ω cm2 after 30 days of immersion
times in the harsh environment (3.5 wt% NaCl solution, pH=7). The implication of the present study for uti-
lization of the natural biomass rubber material to enhance the physical and mechanical properties of polymeric
matrixes has been discussed, and a great anticorrosion coating is provided.
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1. Introduction

Steel as a constructing material has been widely application in all
the world [1–5]. However, the steels in these structures are prone to
corrosion, especially in the marine environment containing many cor-
rosive media, such as chloride, water, oxygen, and so on [6–8]. Material
failure due to corrosion often causes great harm to human lives and
properties every year. Therefore, it is imperative to develop an effective
strategy to prevent the steel from corrosion. Nowadays, there are many
anti-corrosion methods, including metal surface modification, corrosion
inhibitors, and organic protection coatings [9–14]. Organic coatings
have some fascinating advantages, such as high efficiency, convenience,
and low-cost [15]. Epoxy coating, as an organic coating, shows ex-
cellent mechanical properties, acid and alkali resistance, wear re-
sistance and insulation [16–21]. Also, it can be seen as a good antic-
orrosive coating [16]. However, the epoxy resin as a coating material
has two obvious drawbacks. On the one hand, there are some inevitable
solvents, and the volatilization of these solvents often causes some
micro-pores in the epoxy coating during the curing process. On the
other hand, there always are some voids among polymer chains. The
two defects allow corrosive mediums in the environment to contact the
metal substrate, causing the occurrence of the corrosion on the surface
of metal [22]. Thereby, solving the two defects plays an important role
in the further application.

Addition of impermeable nanofillers (i.e., carbon back, clay, carbon
nanotubes, and graphene) has been a common and efficient way to
solve the defects [13,15,22–28]. Currently, Graphene is considered as
the most anticipated barrier filler, exhibiting excellent corrosion re-
sistance [29–38]. However, due to its electrical conductivity, it can
accelerate the corrosion of the metal substrate, resulting in the material
failure [39–43]. Similarly, rubber shows good corrosion protection
property due to its outstanding barrier effect. Compared with graphene,
rubber has non-conducting characteristics and has been a great poten-
tial application in the anticorrosion materials. For example, Hossein
Yahyaei et al. [44] added an epoxy-terminated poly-butadiene rubber
into the epoxy resin to obtain an effective corrosion-resistant and wear-
resistant epoxy coating with good toughening and hydrophobic effects.
However, to our best knowledge, there have been few researches on the
addition of renewable natural rubber into the epoxy coatings to en-
hance the corrosion protection. Furthermore, on the one hand, the
compatibility between natural rubber and epoxy resin is poor due to the
difference in the polarity. On the other hand, the rubber is not well
dispersed because of its two large molecular weight. There are various
approaches to improve the compatibility between natural rubber and
epoxy resin, such as the addition of solubilizers, the chemical mod-
ification of polymers, co-solvent method, and manufacturing inter-
penetrating network structure (IPN) method [45–48].

Eucommia gum (EUG) with the molecular weight in the range of
120,000–300,000 is a natural biomass rubber extracted from the bark
and leaves of Eucommia ulmoides. As a special functional polymer
material, EUG is excellent in fatigue resistance, abrasion resistance,
shock resistance, and tear resistance, and it has other excellent prop-
erties, such as easy crystallization, low melting point, strong insulation,
water resistance, acid and alkali resistance, and chlorine ion resistance
[49–52]. At present, some reports demonstrated that the epoxidation
modification has a great improvement on the compatibility of EUG with
high polarity materials [53]. Despite this, a lot of organic solvents were
used during the procedure of epoxidation reaction, such as toluene,
chloroform, and petroleum ether, which causes environmental issues
[53]. Therefore, it is necessary to develop a green method to modify the
EUG for the improvement of the compatibility.

Based on the above analyses, in this work, epoxidized biomass eu-
commia gum (EEUG) has been successfully synthesized through a novel
and green method involved in the interfacial reaction using the water as
the dispersant. As-obtained EEUG as a nanofiller shows the enhanced
compatibility with epoxy coating. The degree of the epoxidation for

EEUG was characterized by Fourier transform infrared spectroscopy
(FT-IR), and the epoxy value was determined by the chemical titration.
The compatibility of the EEUG with the epoxy coating and the dis-
tribution in the coating were observed by scanning electron microscopy
(SEM). Simultaneously, the glass transition temperature and the
thermal properties of the EEUG was determined by the differential
scanning calorimetry (DSC) and the thermo-gravimetry, respectively.
Additionally, the tensile measurements were carried out to determine
the effect of the addition of EEUG on the mechanical properties of the
epoxy composite coating. Interestingly, a series of electrochemical
measurements show that the corrosion protection performance of epoxy
composite coating is greatly improved due to the good dispersion of
EEUG in the composite coating. It is believed that the EEUG has great
potential application in the anticorrosive field, and our work has also
developed a new strategy for other rubber applications.

2. Experimental

2.1. Raw materials

Concentrated hydrochloric acid, sodium hydroxide, H2O2 (30%wt),
glacial acetic acid (CH3COOH), butyl Alcohol (C4H10O) and xylene
were purchased from China National Pharmaceutical Group Co. Epoxy
resin (E51), polyamide hardener (Ancamide351A), antifoaming agent
(Byk-085), leveling agent (Deqian-839), and dispersing agent (Deqian-
9850) were purchased from Zhuzhou Feilu High-tech Materials Co., Ltd.
(China). Eucommia ulmoides Gum (EUG) was purchased from Xiangxi
Laojiao Biological Co., Ltd. (China). The mild steel panels and Tinplate
were purchased from Hunan Xiangjiang Kansai Paint Co., Ltd. (China).
Deionized water (Self-made).

2.2. Preparation of epoxidized eucommia ulmoides gum (EEUG)

In this work, the EEUG is synthesized through a facile and green
method, which is shown in Fig. 1. Firstly, eucommia ulmoides gum (5 g)
was cut into the small particles, then were transferred to a three-necked
100mL round-bottom flask equipped with a magnetic stirrer, and the
water (50mL) was added. After that, the mixer was heated to 30 °C, and
a mixed of H2O2 (4.5 g) and glacial acetic acid (2.82 g) must be slowly
dropped in 6 h under the magnetic stirring. Subsequently, the produc-
tion was washed with deionized water for several times until pH=7.0,
and then kept it in an oven for 12 h at 75 °C for the evaporation of
water. Finally, it was dried in a vacuum oven at 50 °C for 12 h.

2.3. Preparation of EEUG/epoxy resin composite coating

The mixture of butyl alcohol and xylene (V1:V2= 7:3) was used to
dissolve the mentioned above EEUG at 40 °C for half an hour. Epoxy
resin and the EEUG were put in a 100mL three-necked round-bottom
flask equipped with a magnetic stirrer, in which the mass proportion of
EEUG was 1 wt%. After 1 h stirring, the hardener was added into the
flask as epoxy resin/hardener equal 2/1 (w/w). The final mixture was
coated on a PTFE substrate by a glass rod. After curing at 60 °C for 24 h,
the EEGU/epoxy composite coating was obtained, which was called as
EEGU/epoxy composite coating with 1 wt%. The composite coating was
peeled from the PTFE substrate, revealing a coating thickness of 40mm,
which was used for the mechanical and thermal properties.

For comparison, the different mass proportions of EEUG (0wt%,
0.5 wt% and 2wt%) were used to prepare the epoxy/EEUG composite
coatings according to the above procedure, which was donated as neat
epoxy coating, EEGU/epoxy composite coating with 0.5 wt%, and
EEGU/epoxy composite coating with 2 wt%, respectively.

2.4. Preparation of the samples for corrosion protection performance

The mixture of butyl alcohol and xylene (V1:V2= 7:3) was used to
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dissolve the mentioned above EEUG at 40 °C for half an hour. Epoxy
resin and the EEUG were put in a 100mL three-necked round-bottom
flask equipped with a magnetic stirrer, in which the mass proportion of
EEUG was 1 wt%. After 1 h stirring, the hardener was added into the
flask as epoxy resin/hardener equal 2/1 (w/w). A steel electrode with
an area of 1 cm2 was polished, and cleaned. The mixture was coated on
the surface of Q235 steel electrode by a glass rod. After curing at 60 °C
for 24 h, the EEGU/epoxy composite coating with a thickness of
40.7 ± 0.2 μm was obtained. The prepared specimen was used as the
working electrode for electrochemical corrosion studies.

The electrochemical impedance spectroscopy (EIS) measurements
were carried out in a 3.5 wt% NaCl solution through a three-electrode
system, where the coated electrode was used as the working electrode,
the platinum electrode was used as a counter electrode, and the satu-
rated calomel electrode (SCE) was used as the reference electrode.
Before each EIS measurement, the open circuit potential (OCP) should
reach a steady status. The EIS measurements were performed in the
frequency range of 0.01 Hz–10,000 Hz. The disturbance voltage was
50mV. The electrochemical impedance results were simulated ac-
cording to suitable electrical equivalent circuits through ZSimpWin
software.

2.5. Neutral salt spray test

The neutral salt spray test was conducted according to GB/T1771-
91 [54]. Specimens were placed in a commercial salt-spray chamber at
35 °C. The chamber was filled with 5 wt% NaCl solution in which the
pH was about 6.5, and the amount of spray should be (1–2.5) mL/h per
80 cm2 area. Digital images of specimens were taken as recorded reg-
ularly after cleaning by the filter paper.

2.6. Thermal performance analysis

In order to analyze the thermal performance of the coating, a
thermal analyzer was used to investigate the thermal stability and glass
transition temperature (Tg) of the coating under a nitrogen atmosphere.
The test was performed at a rate of 10 °Cmin−1 from 25 °C to 600 °C
using German Benz thermogravimetric-differential thermal scanning
TG-DSC (STA449C, Netzsch, Germany). DSC was performed at a rate of
10 °Cmin−1 from 25 °C to 200 °C using German Benz differential
thermal scanning (Netzsch, Germany, DSC404F1 Pegasus).

2.7. Mechanical tests of the coating

Tensile test was conducted according to ASTM D638 [55]. Pencil
hardness of coatings was tested as GB/T6739-1996 [56]. Adhesion test
and the impact resistance were performed as GB/T9286-1998 [56] and
GB/T1732-1993 [56], respectively. Chemical resistance tests were
carried out at room temperature and referred to the method of
Chaudhari [57].

3. Results and discussion

3.1. Characterization of EEUG

Eucommia ulmoides gum is a trans-polyisoprene and has the rubber
and plastic duality. Because of the difference in polarity between the
EUG and epoxy resin, the compatibility of the EUG with the epoxy resin
is poor as shown in Fig. S1. Thus, to address the issue, a great potential
method is to modify the EUG by epoxidizing the C]C in the EUG. In
this work, the EEUG is synthesized through a facile and green method
involved in the interfacial reaction, which is shown in Fig. 1. With the
assistance of glacial acetic acid and hydrogen peroxide, the C]C in
EUG is epoxidized to obtain EEUG. Fig. 2 shows the FT-IR spectra of the
EEUG, EUG, and the neat epoxy resin. As seen in FT-IR spectra, the
functional groups are identified. The characteristic peaks at 840 cm−1,
795 cm−1, 746 cm−1 are assigned to the in-plane bending of CeH in
R2C]CHR, resulting from the EUG [58].The characteristic peaks at
1460 cm−1 and 1380 cm−1 are attributed to the bending vibration of
the methyl group, indicating that EUG and EEUG both have the methyl
groups. The peak at 1665 cm−1 owns to the stretching vibration of
C]C. Compared with EUG, the relative intensity of C]C peaks for
EEUG is obviously weakened, suggesting that the C]C is reacted. Al-
though the relative intensity of peaks at 2940 cm−1 and 2840 cm−1

owing to the stretching vibration of the hydrocarbon decreases, the
characteristic peaks still exist, indicative of the presence of C]C in the
EEUG. Additionally, the peak at 3140 cm−1 is the stretching vibration
of the CeH from epoxy resin. Interestingly, as for the EEUG, there are
two new peaks appearing at 1250 cm−1 and 910 cm−1 compared to the
EUG, which are attributed to the characteristic peaks of epoxy resin.
Thus, it can be reasonable to confirm that the epoxidation for EUG has
occurred through the interfacial reaction. Moreover, the epoxy value
for the EEUG has been determined by the chemical titration. The results
show that the epoxy value for the EEUG is about 0.15. Also, the

Fig. 1. Schematic representation of the synthesis of EEUG.
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stretching vibration peak of the carbon-oxygen bond of alcohol locating
at 1090 cm−1 is observed, which reveals the presence of a side reaction
of epoxy ring opening.

The 1H spectra of EUG and EEUG obtained by using Bruker model
DRX-400 NMR spectrometer with TMS as an internal standard are
shown in Fig. S2. It can be seen from Fig. S2 that the signal at 3.4 ppm is
attributed to the hydrogen linked to epoxy group from the EEUG,
Meanwhile, other signals from the EEUG is an agreement with EUG
[59].

The obtained results show that the EEUG is successfully synthesized
and the substantial structure of the EUG is retained. As expected, The
EEUG exhibits the excellent compatibility with the epoxy resin as seen
from Fig. S3. The EEUG was well dispersed in the epoxy resin under the
vigorous stirring and ultrasonication (Fig. S3a). The dispersion is very
stable and no precipitates occur after storing for 60 days (Fig. S3b).

3.2. Surface morphology of EEUG/epoxy composite coatings

To further confirm the compatibility of EEUG with epoxy resin, the
surface and cross-sectional morphologies of the composite coatings
with different contents of EEUG and neat epoxy coating were char-
acterized by SEM. Fig. 3 displays the SEM images of the surface of neat
epoxy coating and EEUG/epoxy composite coatings. It can be seen in
Fig. 3a that the surface of the epoxy resin is smooth. The composite
coatings containing the 0.5 wt% and 1wt% EEUG (Fig. 3b–c) are also as
smooth as epoxy resin. However, when the doped contents od EEUG
further increase, the surface of the composite coating (Fig. 3d) shows
some white spots compared to the composite coatings containing the
0.5 wt% and 1wt% EEUG, which may be due to the particles of free
EEUG. The results also suggest that the EEUG show the good compat-
ibility with epoxy resin when the content of EEUG in the composite
coating is less than 2wt%. Furthermore, Fig. 4 shows the cross-sectional
SEM images of the neat epoxy coating and the composite coatings. As
seen in Fig. 4a, the cross-section of the neat epoxy resin is smooth, but
has some with river-like cracks, which may result from the crack
growth, and the bubble-like circle is a dispersant. Compared to the neat
epoxy coating, the composite coatings containing the 0.5 wt% and 1wt
% EEUG (Fig. 4b–c) has less river-like cracks and are more smooth. This
indicates that the compatibility of the epoxy resin with the EEUG is

Fig. 2. FT-IR spectra of EEUG, EUG, and epoxy resin.

Fig. 3. SEM images of (a) neat epoxy coating, (b) EEUG/epoxy composite coating with 0.5 wt%, (c) EEUG/epoxy composite coating with 1 wt%, and (d) EEUG/epoxy
composite coating with 2 wt%.
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obviously enhanced. However, in the case of the composite coatings
with 2 wt% EEUG (Fig. 4d), the cross section has some recessed sec-
tions, which may be produced by the reuniting of free EEUG. As the
above-obtained results, it is considerable to reveal that when the doped
contents of EEUG are 0.5 wt% and 1wt%, the EEUG can be well dis-
persed in the EEUG/epoxy composite coatings. Nevertheless, with a
further increase of the doped EEUG in the composite coating, the
macromolecular EEUG can be reunited to form the large particles (i.e.,
free EEUG), leading to the poor compatibility of EEUG with epoxy.

3.3. Mechanical properties of the EEUG/epoxy composite coatings

To understand the effect of EEUG on the mechanical properties of
the composite coatings, the tensile measurements were carried out. The
obtained results are exhibited in Fig. 5. In the case of the neat epoxy
coating, the tensile strength value is about 13.23 Mpa. As for the
composite coatings with different doped contents of EEUG, the tensile
strength increases with the doped contents of EEUG, reaches
18.03MPa, which is larger than that of the neat epoxy coating. This
suggests that the introduction of EEUG enhances the tensile strength of
the composite coating compared to the neat epoxy coating. This

Fig. 4. Cross-sectional SEM images of (a) neat epoxy coating, (b) EEUG/epoxy composite coating with 0.5 wt%, (c) EEUG/epoxy composite coating with 1 wt%, and
(d) EEUG/epoxy composite coating with 2 wt%.

Fig. 5. Tensile strength and elongation of (a) neat epoxy coating, (b) EEUG/
epoxy composite coating with 0.5 wt%, (c) EEUG/epoxy composite coating
with 1 wt%, and (d) EEUG/epoxy composite coating with 2 wt%.

Table 1
The other mechanical properties of the coatings.

Coatings Appearance Pencil hardness Adhesion Wet adhesion Impact resistance Chemical resistance

Acid (5%H2SO4), 48 h Alkali (5%NaOH), 48 h

Neat epoxy resin Smooth 4H 0 0 50 cm Corrosion Swell
EEUG/epoxy composite coating with 0.5 wt% Smooth 4H 0 0 50 cm Pass Pass
EEUG/epoxy composite coating with 1wt% Smooth 4H 1 1 48 cm Pass Pass
EEUG/epoxy composite coating with 2wt% Smooth 4H 2 2 48 cm Pass Pass
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phenomenon can be explained by that the following reasons: on the one
hand, the epoxy groups in the EEUG can react with the polyamide
hardener through the addition reaction during the curing process, re-
sulting in forming the closer interpenetrating network structures. On
the other hand, EEUG has the larger relative molecular mass and the

long molecular chain, so it is easier to entangle with the epoxy resin
owing to the rapid evaporation of the solvents during the curing pro-
cess, which leads to forming the denser molecular chains. Thus, the
EEUG/epoxy composite coatings exhibit the richer crosslinking den-
sities.

On the contrary, the elongation at break for the neat epoxy is
greater than the composite coatings. This result indicates that the
toughening for the EEUG/epoxy composite coatings decreases com-
pared to the neat epoxy coating. This is opposite to the recently re-
ported results [60,61]. These recently reported that the introduction of
the rubber in the coating could improve the toughening due to that
rubber particles could absorb energy and prevent crack growth. How-
ever, in our case, the EEUG/epoxy composite coatings have the richer
crosslinking densities compared with the neat epoxy coating, so the
composite coatings have the weaker toughening. Similarly, the slight
increase in the elongation at break for the composite coatings with the
doped contents of EEUG, which suggests that the composite coating
with the 2 wt% EEUG shows the strongest toughening. This is attributed
to that free EEUG (Fig. 4) appearing in the composite coatings can
enhance the toughening of coating, which is consistent with the re-
cently reported results [62].

Table 1 shows the other mechanical properties of the coatings. All
the samples display the good performances of the acid-alkaline resistant
and the impact resistance. For example, the acid and alkali resistance
for the coatings are up to 120 h and 96 h, respectively. The composite
coatings and neat epoxy coating show a similar pencil hardness.
However, with the increase of EEUG, the adhesion of the composite
coatings reduces. The EUG has a large molecular weight and the con-
tent of epoxy group is relatively low, so the adsorption with the sub-
strate is relatively poor, which reduces the adhesion of the coating.

3.4. Thermal stability of the EEUG/epoxy composite coatings

Fig. 6 reveals the TGA curves of the EEUG/epoxy composite coat-
ings and neat epoxy coating. It is noteworthy that the decomposition
profiles of the EEUG/epoxy composite coatings and neat epoxy coatings
show the similar decomposition profiles with degradation occurring in
two stages. Seeing from Fig. 6a, the weight loss doesn’t occur when the
temperature is below 120 °C, which means that all coatings do not
contain the water and solvent. The small loss occurring between 120 °C
and 380 °C should be ascribed to the pyrolysis of the antifoaming agent,
leveling agent, and dispersing agent. In Fig. 6b, two decomposition
peaks appear in 380 °C–485 °C, indicating that all the sample has two
decomposition process. This suggests the degradation of epoxy resin

Fig. 6. (a) TGA analysis and (b) the derived curves of neat epoxy coating,
EEUG/epoxy composite coating with 0.5 wt% EEUG, EEUG/epoxy composite
coating with 1 wt% EEUG, and EEUG/epoxy composite coating with 2 wt%
EEUG.

Fig. 7. DSC curves of neat epoxy coating, EEUG/epoxy composite coating with
0.5 wt% EEUG, EEUG/epoxy composite coating with 1 wt% EEUG, and EEUG/
epoxy composite coating with 2 wt% EEUG.

Fig. 8. The changes of open circuit potential of neat epoxy coating, EEUG/
epoxy composite coating with 0.5 wt%, EEUG/epoxy composite coating with
1 wt%, and EEUG/epoxy composite coating with 2 wt%.

B. Chen, et al. Chemical Engineering Journal 379 (2020) 122323

6



follows a complicated mechanism [63]. The results suggest that the
introduction of EEUG doesn’t compromise the thermal properties of
epoxy. Moreover, to determine the influence of the EEUG on glass
transition temperature (Tg) of the coating, differential thermal scanning
(DSC) was conducted. Fig. 7 shows the DSC curves of the EEUG/epoxy

composite coatings and neat epoxy coating. It is clearly seen from Fig. 7
that the EEUG/epoxy composite coating with 1 wt% has the highest Tg
values, which is approximately 82.84 °C. The EEUG/epoxy composite
coating with 1 wt% has the lowest Tg because of the increase in free
volume fractions in the polymer coatings [64].

Fig. 9. Time-depended Bode and phase angle plots of (a, b) neat epoxy coating, (c, d) EEUG/epoxy composite coating with 0.5 wt%, (e, f) EEUG/epoxy composite
coating with 1 wt%, and (g, h) EEUG/epoxy composite coating with 2 wt%.
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3.5. Corrosion resistance of the EEUG/epoxy composite coatings

Open circuit potential (E(OCP)) was performed to quantitatively
analyze the corrosion resistance of the composite coatings with the
different contents of EEUG and the neat epoxy coating in 3.5 wt% NaCl
solution at pH=7 for different immersion times. The obtained results
are shown in Fig. 8. As for the EEUG/epoxy composite coating with 1 wt

%, the E(OCP) value is the largest among the all coatings during the
immersion times, stabilizing at larger than −0.2 V/SCE during the
30 days of the immersion times. The E(OCP) value for the EEUG/epoxy
composite coating with 0.5 wt% EEUG stabilizes at slightly lower than
−0.2 V/SCE during the immersion times. However, the neat epoxy
coating and the EEUG/epoxy composite coating with 2 wt% has the
lower E(OCP) during the 15 days of the immersion times, keeping at

Fig. 10. Time-depended Nyquist diagrams of (a) neat epoxy coating, (b) EEUG/epoxy composite coating with 0.5 wt%, (c) EEUG/epoxy composite coating with 1 wt
%, and (d) EEUG/epoxy composite coating with 2 wt%.

Fig. 11. The equivalent electrical circuits employed to simulate the impedance data of the samples.
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around −0.6 V/SCE. This means that the corrosion resistance of the
EEUG/epoxy composite coatings with 0.5 and 1wt% EEUG is sig-
nificantly enhanced compared to the neat epoxy coating, owing to the
presence of EEUG in the composite coatings.

To further determine the corrosion protection properties of the
coatings, the electrochemical impedance spectroscopy (EIS) measure-
ments were carried out. The time-depended Bode, phase diagrams and
Nyquist diagrams of the EEUG/epoxy composite coatings and neat
epoxy coatings are shown in Figs. 9 and 10, respectively. Especially, the
immersion times for the neat epoxy coating and the composite coating
with 2wt% are 15 days, since the coatings on the steel electrode surface
have dropped and the steels have been seriously corroded. The others
are 30 days. It is seen from Fig. 9a–d that the impedance modulus va-
lues at 0.01 Hz (|Z|0.01Hz) of the neat epoxy coating and the composite
coating with 2 wt% EEUG are greater than 106Ω cm2 after 1 day of the
immersed time. Meanwhile, they have only one maximum phase angle.
This means it can represent a typical behavior of the initial organic
coating soaking [65]. The coatings can be realized as a good barrier to
prevent the metal substrate from the corrosion. After 4 days immersed
in 3.5 wt% NaCl solution, a new time constant appears in Fig. 9b,
meanwhile, the impedance modulus at 0.01 Hz (|Z|0.01Hz) significantly
decreases. This indicates that the corrosive medium has passed through
the coating and is in contact with the metal substrate, leading to the
occurrence of the corrosion on the metal surface. With further increase
in the immersed times, the |Z|0.01Hz of neat epoxy coating evidently
drops. After 15 days of immersion times, the |Z|0.01Hz values is less than
105Ω cm2, which means that the corrosion protection for the neat
epoxy coating has failed. As for the composite coating with 2 wt%, after
4 days of immersion times, the |Z|0.01Hz suddenly increases (Fig. 9g).
This is explained by that the metal substrate is corroded by the elec-
trolyte presented at the surface of metal and forms a protective oxide
film. However, the immersion times are expanded to 15 days, the cor-
rosive mediums passed through the protective oxide film and continued
to corrode the metal substrate, which is evidenced by the remarkable
decrease of the |Z|0.01Hz (less than 105Ω cm2) and phase angle
(Fig. 9g–h). In the case of the composite coating with 0.5 and 1wt%
EEUG, after 30 days of the immersion times, the |Z|0.01Hz values are
about 3.74× 108Ω cm2 and 9.06× 108Ω cm2 (Fig. 9c and e), respec-
tively. Moreover, the phase angles with a one-time phase during the

entire immersion times (Fig. 9d and f) are in line with the typical or-
ganic coating immersion behavior [15]. These results distinctly suggest
that the corrosion resistances of the EEUG/epoxy composite coatings
with 0.5 and 1wt% are significantly improved compared with the blank
coating and the EEUG/epoxy composite coatings with 2 wt% EEUG.

The EIS were further analyzed by the equivalent electrical circuits as
shown in Fig. 11. Fig. 11a was to fit the EIS with one time constant and
the EIS with two-time constants was fitted by Fig. 11b. Q is a constant
phase angle element, representing the equivalent capacitance of the
coating capacitance and the electric double layer capacitance of the
electrode and solution [65]. The constant-phase element is related to an
equivalent capacitance such as the coating capacitance (Cc), and the
capacitance of the double-charge layer (Cdl) can be determined by the
following equation [65]:

= ×
−C Q R( )x x x

n1 n
1

where the Cx, Qx, Rx and n are the capacitance, constant-phase element,
the charge transfer resistance of coating (Rc), and the empirical ex-
ponent, respectively. The fitting impedance parameters for the coatings
immersed in 3.5 wt% NaCl solution at pH=7 against the immersion
duration are summarized in Table 2. Generally, when n is equal to 1, Q
acts as a purely capacitive element. The polarization resistance (Rf) is
often utilized to refer to the degree of difficulty for corrosion to occur
on the specimen. In general, the Rf is equivalent to the sum of charge
transfer resistance (Rct) and coating resistance (Rp), i.e., Rf= Rct+ Rc.
Commonly, the higher the Rf value is, the better the corrosion protec-
tion is. After 7 days of the immersion times, the Rf of neat epoxy coating
is only 3.582×104Ω cm2, meaning that the corrosion resistance of the
epoxy coating is failure, which is good agreement with the results from
the Bode plots (Fig. 9a). Rf value of the EEUG/epoxy composite coating
with 2 wt% decreases from 4.063× 106Ω cm2 to 2.158×105Ω cm2

after 15 days of immersion times in 3.5 wt% NaCl solution, suggesting
the EEUG/epoxy composite coating with 2 wt% has been seriously da-
maged and cannot protect the metal from corrosion. It is evident from
Table 2 that the Rf of the EEUG/epoxy composite coating with 0.5 and
1wt% is much larger than that of the EEUG/epoxy composite coating
with 2 wt% and the neat epoxy coating through the immersion dura-
tion. For example, after 30 days of immersion times, the Rf values of the
EEUG/epoxy composite coating with 0.5 and 1wt% are

Table 2
The electrochemical impedance parameters fitted from the measured impedance data in Fig. 9.

Coating Immersion times
(days)

Rc (Ω cm2) Qc Cc (F/cm2) Rct (Ω cm2) Qdl Cdl (F/cm2) Rf (Ω cm2)

Y (Ω−1cm−2Sn) n Y (Ω−1cm−2Sn) n

Neat epoxy coating 1 1.804× 106 3.331× 10−7 0.7543 2.82× 10−7 1.804× 106

4 5.450× 105 1.583× 10−5 0.5934 6.93× 10−5 4.556× 103 2.577×10−6 0.5193 4.21× 10−8 5.496× 105

7 7.959× 103 1.193× 10−5 0.8642 8.24× 10−6 2.786× 104 4.979×10−5 0.4211 7.81× 10−5 3.582× 104

11 2.610× 103 1.032× 10−4 0.2943 4.42× 10−6 3.492× 104 2.858×10−4 0.8154 4.81× 10−4 3.753× 104

15 2.150× 103 7.801× 10−4 0.6323 1.05× 10−3 3.699× 104 1.263×10−4 0.2881 5.69× 10−3 3.914× 104

EEUG/epoxy composite
coating with 0.5 wt%

6 2.376× 109 1.988× 10−10 0.7171 1.47× 10−10 2.376× 109

12 7.732× 108 2.497× 10−10 0.6672 1.09× 10−10 7.732× 108

18 6.446× 108 6.065× 10−10 0.8132 3.79× 10−10 6.446× 108

24 6.017× 108 7.665× 10−10 0.8711 5.13× 10−10 6.017× 108

30 3.321× 108 1.102× 10−9 0.6234 1.03× 10−9 3.321× 108

EEUG/epoxy composite
coating with 1wt%

6 5.151× 109 1.741× 10−10 0.7222 1.67× 10−10 5.151× 109

12 1.556× 109 1.956× 10−10 0.6963 1.16× 10−10 1.556× 109

18 1.114× 109 3.517× 10−10 0.7138 3.51× 10−10 1.114× 109

24 9.815× 108 8.118× 10−9 0.8725 6.18× 10−9 9.815× 108

30 8.846× 108 9. 912× 10−9 0.9145 1.01× 10−8 8.846× 108

EEUG/epoxy composite
coating with 2wt%

1 4.063× 106 4.514× 10−7 0.4616 6.24× 10−8 4.063× 106

4 2.056× 106 6.465× 10−7 0.6505 1.15× 10−7 1.167× 106 5.082×10−6 0.6719 2.15× 10−6 3.223× 105

7 1.242× 105 4.094× 10−6 0.4256 3.02× 10−5 1.157× 105 7.340×10−11 0.9898 7.34× 10−11 2.399× 105

11 1.217× 105 7.146× 10−6 0.6713 1.12× 10−5 1.216× 105 7.019×10−11 0.9885 7.02× 10−11 2.433× 105

15 8.930× 104 2.497× 10−5 0.7037 3.50× 10−5 1.265× 105 7.324×10−11 0.9936 7.06× 10−11 2.158× 105
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Fig. 12. Digital images of (a) neat epoxy coating, (b) EEUG/epoxy composite coating with 0.5 wt%, (c) EEUG/epoxy composite coating with 1 wt%, and (d) EEUG/
epoxy composite coating with 2 wt% after (a1, b1, c1, d1) 0 h, (a2, b2, c2, d2) 100 h, (a3, b3, c3, d3) 200 h, and (a4, b4, c4, d4) 300 h neutral salt spray measurements.
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3.321× 108Ω cm2 and 8.846×108Ω cm2, respectively. Thereby,
these as-obtained results suggest that the protective performances of the
EEUG/epoxy composite coating with 0.5 and 1wt% are remarkable
improvement. Meanwhile, compared to the EEUG/epoxy composite
coating with 0.5 wt%, the corrosion protection of the EEUG/epoxy
composite coating with 1 wt% is further enhanced.

Additionally, the changes of Qc for the coatings can reflect the
above-mentioned conclusion. Generally, the penetration of the elec-
trolyte solution in the coating often causes an increase in Qc. As sum-
marized in Table 2, the Qc values for the EEUG/epoxy composite
coating with 2 wt% and the neat epoxy coating are around
2.497× 10−5Ω−1cm−2Sn and 7.801×10−4Ω−1cm−2Sn after
15 days of immersion, respectively, being at least four orders of mag-
nitude larger than the EEUG/epoxy composite coating with 0.5 and
1wt%. These results that there are only a small amount of electrolytes
absorbed in the EEUG/epoxy composite coating with 0.5 and 1wt%.

3.6. Neutral salt spray (NSS) measurement

To further understand the corrosion protection performance of the
coatings, the neutral salt spray (NSS) tests were performed. It is well-
known that the NSS test has been widely used to the corrosion pro-
tective property of the coating in the industry. The visual performance
of the species subjected to the NSS test after 300 h is presented in
Fig. 12. It is easily found that after 100 h NSS tests, the neat epoxy
coating has the visibly localized pitting corrosions (Fig. 12a2),

indicating the metal substrate has been seriously corroded. In the case
of the EEUG/epoxy composite coating with 2 wt%, a number of obvious
pitting corrosions have appeared after 300 h NSS tests (Fig. 12d3). After
the incorporation of the 0.5 wt% and 1wt% EEUG into the coating,
respectively, the number of rust pots can be ignored during the entire
NSS tests process (Fig. 12b and c). These demonstrate that the corrosion
protective performance of the EEUG/epoxy composite coatings with
0.5 wt% and 1wt% has been significantly improved.

3.7. Moisture absorption

To demonstrate the physical barrier ability of the EEUG/epoxy
composite coatings and epoxy coatings for the H2O molecules, the
moisture adsorption measurements were carried out. After 350 h of the
immersion times in the deionized water, the saturation was obtained for
all epoxy coatings. Fig. 13 displays the water absorption of the EEUG/
epoxy composite coating and epoxy coating. The water absorption for
the coating was determined according to ASTM D570. The samples
were removed from the water at regular intervals and weighed. The
percentage gain (Mt) was calculated by the following equation:

=

−

×M
W W

W
100%t

wet dry

dry

whereWwet andWdry are the weight of the specimen after and before the
immersion. As shown in Fig. 13, the water adsorption of the EEUG/
epoxy composite coatings with 0.5 wt% and 1wt% at saturation is
much lower than that of the EEUG/epoxy composite coatings with 2 wt
% and the neat epoxy coating. This indicates that the EEUG/epoxy
composite coatings with 0.5 wt% and 1wt% have good physical barrier
performance for the H2O molecules, reducing the penetration and ab-
sorption of water in the composite coatings. This can further explain
that why the corrosion protection properties of the EEUG/epoxy com-
posite coatings with 0.5 wt% and 1wt% are much better than the
EEUG/epoxy composite coating with 2 wt% and neat epoxy coating.

3.8. Reasonable corrosion protection mechanism

According to the above-obtained results, it is reasonably concluded
that compared to the neat epoxy coating, the corrosion protection
properties of the EEUG/epoxy composite coatings with 0.5 and 1wt%
have been remarkably enhanced. A reasonable explanation for this
phenomenon is that the EEUG has the active epoxy groups, which can
react with the polyamide hardener during the curing process, not only
resulting in the formation of the closer three-dimensional cross-linked
structures, but also causing the good dispersion in the composite
coatings. Meanwhile, EEUG is easier to entangle with the epoxy resin
due to the large relative molecular mass and the long molecular chain
during the rapid evaporation of solvents process. Based on the two
reasons, the EEUG/epoxy composite coatings have the much richer
crosslinking densities. The much richer crosslinking densities act as the
better physical barriers to prevent the electrolytes from passing through
the coatings as illustrated in Fig. 14a. Therefore, the EEUG/epoxy
composite coatings with 0.5 and 1wt% exhibit the significant en-
hancement of corrosion resistance. However, when the doped EEUG is
up to 2 wt% in the composite coatings, there is the existence of free
EEUG in the coatings (Figs. 3d and 4d). These free EEUG can further
form the large particles due to the agglomeration, leading to an increase
of the molecular chain gap, which is beneficial for the formation of the
diffusion channels for the electrolytes. This can promote the corrosive
medium to pass through the coatings as illustrated in Fig. 14b. Thereby,
the reasons can accounted for why the poor corrosion protection for the
EEUG/epoxy composite coating with 2 wt%.

Fig. 13. Water absorption of immersed neat epoxy coating, EEUG/epoxy
composite coating with 0.5 wt%, EEUG/epoxy composite coating with 1 wt%,
and EEUG/epoxy composite coating with 2 wt%.

Fig. 14. Proposed mechanism of the enhanced corrosion protection of the
EEUG/epoxy composite coating. (a) EEUG/epoxy composite coatings with 0.5
or 1 wt%; (b) the EEUG/epoxy composite coating with 2 wt%.
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4. Conclusion

Epoxidized biomass eucommia gum (EEUG) was successfully pre-
pared through a simple and green interface reaction. As a nanofiller,
EEUG/epoxy composite coating with the contents up to 1 wt% can be
easily processed. The epoxy group in the EEUG could react with the
hardener, not only resulting in the good compatibility with epoxy resin
in the composite coating, preventing the EEUG from agglomeration, but
also leading to the formation of the much richer crosslinking densities,
which is favor to increase the tensile strength. Furthermore, because of
the richer crosslinking densities, the EEUG/epoxy composite coating
containing 1 wt% EEUG shows the significantly enhanced corrosion
protection performance. After 30 days immersed in 3.5 wt% NaCl so-
lution, the Rf value still stabilized at about 8.846×108Ω cm2. It is
believed that this facile process can be easily scaled up to generate
epoxy composites with the biomass eucommia gum.
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