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Abstract: Recently, biomass-derived fire-safe epoxy thermosets have been developed for the 

substitute of petroleum-derived bisphenol A epoxy thermosets due to the shortage of 

petroleum resources and the negative health impacts of petroleum-derived products. However, 

the synthesis of bio-based epoxy thermosets combining excellent mechanical properties and 

fire-safety performance is still a great challenge. In this paper, a novel Schiff base compound 

4,4'-((1E,1'E)-((oxybis(4,1-phenylene))bis(azanylylidene))bis(methanylylidene))bis(benzene-

1,2-diol) (PH-ODA) was efficiently synthesized from bio-based protocatechualdehyde. 

PH-ODA was subsequently reacted with epichlorohydrin to obtain the epoxy monomer 

(1E,1'E)-N,N'-(oxybis(4,1-phenylene))bis(1-(3,4-bis(oxiran-2-ylmethoxy)phenyl)methanimin

e) (PH-ODA-EP). After curing PH-ODA-EP with 4,4'-diaminodiphenylmethane (DDM), the 

cured resin PH-ODA-EP/DDM network possessed a high glass transition temperature (Tg) of 

204.9 ℃ and showed a 181.8%, 105.8% and 87.0% increase in char yield (in N2) (41.7% vs. 

14.8%), storage modulus (at 30 ℃) (6.01 GPa vs. 2.92 GPa) and tensile modulus (6.21 GPa vs. 

3.32 GPa), respectively, compared with the cured bisphenol A epoxy resin (DGEBA)/DDM. 

Moreover, PH-ODA-EP/DDM possessed excellent fire-safety properties (limited oxygen 

index (LOI) value = 40.5%) due to the introduction of Schiff base structure, showing a 90.9% 

and 72.0% reduction (compared with DGEBA/DDM) in peak heat release rate and total heat 

release value. This work provided a facile and sustainable route for synthesizing Schiff base 

compounds using biomass-derived resources, exhibiting great potential for the application in 

high-performance fire-safe epoxy thermosets.

Keywords: Biomass; Schiff base; Fire-safe; Epoxy thermosets; Mechanical properties
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1. Introduction

In recent years, the growing fossil energy crisis and environmental pollution problems 

have attracted increasing attention from the whole world, and thus promoted the research and 

development of biomass-derived materials and products to achieve a sustainable future [1-7]. 

Various important chemicals or materials were successfully developed from biomass 

resources [8-10], such as cellulose nanocrystals (CNCs) [11-13], bio-oil [14], monoterpenes 

[15], furfural [16], polylactic acid (PLA) [17], and polycarbonate [18]. 

Schiff base compounds are very important chemicals and have been widely applied in 

various areas (i.e., drug release, electrochemical cells, gas separation, and catalysts) because 

of their diverse properties (i.e., catalytic, magnetic, and biological properties) [19-21]. 

Recently, Schiff base compounds were applied for fabricating polymers due to their good 

thermal stability, degradability and mechanical properties [22-24]. Xu et al. [24] reported two 

Schiff base epoxy resins with the outstanding degradability and antibacterial properties, the 

Schiff base resins could be degraded in mild acidic medium. Meanwhile, the azomethine 

(-CH=N-) structure in Schiff base polymers exhibits the good fire-safety performance because 

it can facilitate the crosslinking of polymers during combustion [25,26]. Obviously, Schiff 

base compounds have great potential for the application in the fields of high-performance 

polymers with good fire-safety properties.

Epoxy resins are commonly-used versatile thermosetting materials and have been used 

for various applications attribute to its high integrated properties [27-32]. Recently, various 

biomass-derived compounds have been utilized as the feedstocks for preparing the renewable 

epoxy thermosets [33,34]. However, developing renewable epoxy thermosets that combine 
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high integrated properties and good fire-safety performance is still a challenge. Interestingly, 

it was reported that the introduction of Schiff bases into polymers simultaneously enhanced 

the mechanical properties and fire-safety properties of polymers [35]. Therefore, developing 

epoxy thermosets from biomass-derived Schiff base compound is a potential way to address 

the challenge above. However, the preparation of bio-based fire-safe epoxy thermosets 

derived from Schiff base is still in its infancy. Protocatechualdehyde is a plant-derived 

phenolic aldehyde compound containing two phenolic hydroxyl groups and an aldehyde 

group, which has been widely used in medicine because of its biological activities [36,37]. 

Based on its unique structures and functional groups, protocatechualdehyde might be a 

promising biomass resource for preparing high-performance Schiff base epoxy thermosets 

[38]. In addition, the curing process also greatly affects the properties of ultimate epoxy 

thermosets [39-41]. Therefore, the study on the curing kinetics is of significance to 

high-performance thermosets. Normally, the curing kinetics study can be carried out with the 

help of differential scanning calorimetry (DSC) at non-isothermal conditions and many 

methods (e.g., Kissinger's method and Cure Index) have been used to reveal the relationship 

between the curing process and the properties of epoxy thermosets [42-45].

In this work, for the first time, a bio-based epoxy resin with outstanding mechanical and 

fire-safety properties is synthesized from a novel biomass-derived aromatic Schiff base 

compound. The Schiff base compound, 

4,4'-((1E,1'E)-((oxybis(4,1-phenylene))bis(azanylylidene))bis(methanylylidene))bis(benzene-

1,2-diol) (PH-ODA), is synthesized from renewable protocatechualdehyde and subsequently 

reacts with epichlorohydrin to obtain the epoxy monomer PH-ODA-EP. The thermal stability, 
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mechanical properties, and fire-safety performance of the cured resin PH-ODA-EP/DDM, 

from PH-ODA-EP cured with 4,4'-diaminodiphenylmethane (DDM),  are evaluated and 

compared to commercial bisphenol A epoxy resin (DGEBA)/DDM. The curing kinetics of 

PH-ODA-EP/DDM and DGEBA/DDM are studied by non-isothermal DSC experiments. It is 

expected that an epoxy thermoset from a novel biomass-derived aromatic Schiff base 

compound has the outstanding mechanical and fire-safety properties. This work provides a 

sustainable and facile route for preparing Schiff base compounds from biomass and a strategy 

to simultaneously enhance the mechanical properties and fire-safety properties of bio-based 

epoxy thermosets.

   

2. Materials and methods

2.1. Materials

Protocatechualdehyde, 4,4’-diaminodiphenyl ether (ODA), epichlorohydrin (ECH), 

tetrabutylammonium bromide (TBAB) and 4,4’-diaminodiphenylmethane (DDM) were 

obtained from Aladdin Reagent Co. Ltd., China. Ethanol, ethyl acetate, sodium hydroxide 

(NaOH), and anhydrous sodium sulfate (Na2SO4) were purchased from Guangzhou Chemical 

Reagent Factory, China. DGEBA (epoxy value = 0.51 mol·100 g−1) was purchased from 

SINOPEC Baling company, China. 

2.2. Synthesis of Schiff base PH-ODA

Protocatechualdehyde (41.4 g, 0.30 mol) was added in 350 mL of ethanol (in a 500 mL 

three-necked flask) and dissolved. Then, ODA (19.8 g, 0.10 mol) was slowly added to the 

above solution. After stirring at 30 oC for 30 min, the reaction system was heated to 80 ℃ and 
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kept at this temperature for 5 h (N2 atmosphere). Afterward, the reaction system was cooled to 

room temperature and poured into 1000 mL of ice water. The resultant solid was filtered and 

washed (three times) with ethyl acetate. Then, the resultant solid was vacuum dried at 70 oC 

for 12 h to obtain the yellow powder PH-ODA (39.0 g, yield 88.7%).

2.3. Synthesis of PH-ODA-EP

PH-ODA (22.02 g, 50 mmol), ECH (46.26 g, 0.5 mol), TBAB (1.61 g, 5.0 mmol), 

250 mL of ethanol were placed in a 500 mL three-necked flask. The reaction system was 

stirred at 80 ℃ for 6 h (N2 atmosphere). Afterward, the reaction system was cooled down to 

60 ℃, and NaOH aqueous solution (40 wt %, 35 mL) was dropwise added to the reaction 

system and then stirred at 60 ℃ for 6 h. After that, the reaction system was cooled to room 

temperature and the solvent was removed using a rotary evaporator. Then the resultant 

product was diluted with ethyl acetate and then washed three times with distilled water. 

Subsequently, the organic layer was dried using anhydrous Na2SO4 and filtered. Finally, 

rotary evaporation was used to remove the solvent and a brown viscous oil PH-ODA-EP 

(30.08 g, yield 90.5%) was obtained.

2.4. Preparation of the cross-linked thermosets

The cured resin PH-ODA-EP/DDM was prepared via curing reaction of PH-ODA-EP 

with DDM (molar ratio of epoxy group in PH-ODA-EP to N–H in DDM was 1:1). A 

stoichiometric mixture of PH-ODA-EP and DDM was mixed homogeneously at 70 ℃, and 

then poured into a mould and degassed at 70 ℃ for 20 min. Afterward, the mixture was cured 

at 110 ℃ for 2 h, 150 ℃ for 2 h, and 190 ℃ for 2 h to obtain PH-ODA-EP/DDM. The 

procedures of DGEBA/DDM fabrication are the same as above.
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2.5. Characterizations

1H and 13C nuclear magnetic resonance (NMR) spectra were collected with a Bruker 

NMR spectrometer (Billerica, MA, USA) and deuterated dimethylsulfoxide (DMSO-d6) was 

used as the solvent. The infrared spectra (FT-IR) were obtained with a Vertex70 spectrometer 

(Bruker, Billerica, MA, USA) using KBr pellets.

Differential scanning calorimetry (DSC) tests were carried out with a Netzsch DSC 

200F3 in nitrogen for nonisothermal curing behavior. The mixture (about 5 mg) of epoxy 

monomer and DDM was analyzed at five heating rates of 2.5, 5, 10, 15, and 20 ℃·min−1 (from 

50 to 250 °C), respectively. The viscosity of curing system (epoxy monomer and DDM) was 

measured (heating rate = 3 °C ·min−1, angular frequency = 1 Hz) using a Rheo Stress (RS150) 

rheometer (Haake, Germany). Thermogravimetric analyses (TGA) were conducted using a 

TG-209F1 TGA (Netzsch, Selb, Germany) at a heating rate of 10 °C·min−1 (N2 atmosphere), 

and the temperature range was from 50 to 700 ℃. Dynamic mechanical analysis (DMA) was 

conducted using a TA instrument (DMA Q800, America) at a heating rate of 3 °C·min−1 

(from 25 to 230 °C). The dimensions of cured samples for measurement were 

40 × 10 × 3.0 mm.

Tensile and flexural properties were analyzed based on ASTM D638-08 and ASTM 

D790-07, respectively, on an Instron-5967 universal electronic testing machine.

UL-94 vertical burning tests were conducted with a UL 94 flame chamber (Fire Testing 

Technology, UK)) according to ASTM D3801–10 (sample dimension of 125×13×3 mm). 

Limiting oxygen index (LOI) tests were conducted using an oxygen index instrument (Fire 

Testing Technology, UK) according to ASTM D2863-97 (sample dimension of 150×6.5×3.2 
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mm). Cone calorimeter tests (CCT) were conducted using a FTT cone calorimeter according 

to ISO5660 (sample dimension of 100×100×5 mm). 

Scanning electron microscopy (SEM) experiments were conducted with a NOVA 

NANOSEM 430 machine. The sample was sputter-coated with gold before testing. X-ray 

photoelectron spectrum (XPS) was conducted using a Axis Ultra spectrometer (Kratos, 

England). Thermogravimetry-Fourier transform infrared spectrometer (TGA-FTIR) tests were 

conducted with a STA449C/3MFC/G instrument (Bruker, USA) (N2 atmosphere, heating rate 

= 20 °C/min).

3. Results and discussion

3.1. Synthesis strategy

The renewable aromatic Schiff base epoxy monomer PH-ODA-EP is prepared from 

protocatechualdehyde, ODA and ECH in two steps illustrated in Fig. 1: (i) 

protocatechualdehyde reacts with ODA to obtain a Schiff base intermediate PH-ODA; (ii) 

PH-ODA reacts with ECH (obtained from the chlorination of biomass-derived glycerol [46]) 

to get a renewable epoxy monomer PH-ODA-EP. The above synthesis steps are simple and 

high-yield, which provides a feasible way for the scalable and sustainable production of 

bio-based epoxy thermosets.

The structures of the Schiff base compounds PH-ODA and PH-ODA-EP are verified 

using FT-IR (Fig. 2), 1H and 13C-NMR techniques (Fig. 3). As shown in the FTIR spectra of 

protocatechualdehyde, ODA, PH-ODA and PH-ODA-EP (Fig. 2), the absorption peaks at  

3442 cm−1 (N-H stretching) and 1672 cm−1 (C=O stretching), which are respectively observed 
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in the spectra of ODA and protocatechualdehyde, disappear in PH-ODA and PH-ODA-EP 

spectra. Meanwhile, the absorption peak at 1605 cm-1 (-OH stretching) appears in both spectra 

of protocatechualdehyde and PH-ODA. The above results demonstrate the successful 

synthesis of PH-ODA from protocatechualdehyde and ODA. Besides, the disappearance of 

the absorption peak at 1605 cm-1 (-OH stretching) in PH-ODA spectrum and the appearance 

of the peak at 974 cm−1 (C-O-C stretching of epoxy group) in PH-ODA-EP spectrum suggest 

that PH-ODA is successfully converted to PH-ODA-EP. The 1H-NMR spectra of the obtained 

PH-ODA and PH-ODA-EP are illustrated in Fig. 3. It is depicted that the actual chemical 

shifts of H atoms in the 1H-NMR spectra are in good agreement with the theoretical values 

from the PH-ODA and PH-ODA-EP structures. It is noted that PH-ODA-EP shows to be the 

mixture of oligomers and monomers according to the PH-ODA-EP spectrum, which is in 

accordance with the results of literature [47]. Therefore, PH-ODA and PH-ODA-EP are 

successful synthesized by a facile and sustainable route.

3.2. Curing kinetics, viscosity and processability

The nonisothermal curing kinetics of the PH-ODA-EP/DDM and DGEBA/DDM curing 

systems are studied using DSC at various heating rates [48] and depicted in Fig. 4. It is visible 

that both PH-ODA-EP/DDM and DGEBA/DDM curing systems show one curing stage with 

an exothermic peak. The onset, peak, and endset cure temperatures (Tonset, Tp and Tendset), the 

complete cure temperature interval (ΔT), and total heat release during the complete cure 

process (ΔH∞, determined by calculating the surface area under the DSC curves [49]) for 

PH-ODA-EP/DDM and DGEBA/DDM curing systems at five heating rates (2.5, 5, 10, 15 and 
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20 °C/min) are listed in Table 1. According to the investigated protocol for the cure analysis 

of thermosets [49], the curing process of PH-ODA-EP/DDM and DGEBA/DDM at five 

heating rates (2.5, 5, 10, 15 and 20 °C/min) was studied qualitatively by the use of Cure Index 

(CI) [43,44], which can be calculated according to the literature [42,45]. The CI values show 

that the cure behavior of PH-ODA-EP/DDM at different heating rates (2.5, 5, 10, 15 and 

20 °C/min) belongs to the case of Poor cure compared with that of DGEBA/DDM (Table 1). 

Accoding to the protocol from literature [42,43], diffusion is the main mechanism during the 

curing process of PH-ODA-EP/DDM. The early stage of curing reaction leads to the 

prematuration gelation of curing systems, which restricts the interaction between the polymer 

chains and curing agent. In this case, the curing reaction is mainly controlled by the diffusion 

ability of polymer chains and curing agent.

Kissinger’s method is utilized for the calculation of the curing apparent activation energy 

[50]:

                                              (1)
p

a

a
2
p RT

E)
E
ARln()

T
ln( 

β

where β and R respectively represent the heating rate and the ideal gas constant. Ea and A 

represent the apparent activation energy and the pre-exponential factor, respectively.

The related results are calculated and showed in Fig. 5 and Table 1, which can be found 

that PH-ODA-EP/DDM curing systems possesses higher Ea (73.4 kJ·mol−1) than 

DGEBA/DDM curing systems (50.4 kJ·mol−1), indicating the lower reactivity of 

PH-ODA-EP/DDM curing systems compared with DGEBA/DDM [51]. This result is mainly 

caused by the larger molecular weight of PH-ODA-EP than that of DGEBA and the steric 

hindrance of PH-ODA-EP molecule [52]. In addition, the curing reaction is mainly controlled 
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by the diffusion ability of reagents according to the CI value of PH-ODA-EP/DDM curing 

systems [42,43]. 

The viscosity of epoxy curing systems is one of the majar parameters that determines its 

end use due to the close relationship between viscosity and processing [53]. Fig. 6 illustrates 

the effect of temperature on the viscosity of PH-ODA-EP/DDM and DGEBA/DDM curing 

systems. As seen, the viscosity of PH-ODA-EP/DDM curing system is lower than that of 

DGEBA/DDM curing system in nearly the whole curing process, which indicates that 

PH-ODA-EP/DDM curing system is acceptable for processing.

3.3. Thermal stability

Fig. 7 depicts the TGA profiles of the cured resins PH-ODA-EP/DDM and 

DGEBA/DDM (N2 atmosphere), and corresponding results are collected (Table 2). As seen 

from Fig. 7 (a), the 5 wt% mass loss temperature (T5%) of PH-ODA-EP/DDM is lower than 

DGEBA/DDM, which is probably due to the low bonding energy of imine bond (C=N) from 

PH-ODA-EP moieties [54]. In spite of that, the T5% of PH-ODA-EP/DDM is much higher 

than its glass transition temperature (Tg) (see below). Different from DGEBA/DDM with one 

single degradation stage, PH-ODA-EP/DDM has two degradation stages according to the 

differential thermogravimetry (DTG) curve. The first degradation stage (280-350 oC) is 

mainly related to the early degradation of the Schiff base structure, which forms stable 

cross-linking networks and promotes the char forming [25]. The second degradation process 

(350-700 oC) is mainly attributed to the degradation of the epoxy matrix. Besides, the 50 wt% 

loss temperature (Tmax) of PH-ODA-EP/DDM is 89 ℃ higher than that of DGEBA/DDM (503 
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℃ vs. 414 ℃), showing that the early decomposition of Schiff base structure can inhibit the 

further thermal degradation of epoxy matrix. As depicted in Fig. 7 (b), the maximum 

degradation rate (Rmax) of PH-ODA-EP/DDM (5.1%·min−1) is far lower than DGEBA/DDM 

(31.3%·min−1) and the reduction is 83.7%, indicating that the PH-ODA-EP/DDM possesses 

an excellent inhibition effect over thermal degradation. More impressively, the char yield (Yc) 

of PH-ODA-EP/DDM reaches 41.7% at 700 ℃, showing 182% higher than DGEBA/DDM 

(14.8%). The extremely low decomposition rate and high char yield of PH-ODA-EP/DDM 

mainly attribute to the introduction of Schiff base structure in PH-ODA-EP, which promotes 

the char forming during the degradation of epoxy matrix [26,55]. Besides, the compact 

aromatic structure in PH-ODA-EP molecule also contribute to the formation of char layer [56]. 

PH-ODA-EP/DDM possesses great potential for the application in fire-safe epoxy epoxy 

thermosets originated from its superior charring ability.

3.4. Fire-safety properties

Fire-safety properties are important properties for high performance epoxy thermosets 

used in many fields (i.e., aerospace and electronic industry) [57-59]. The limiting oxygen 

index (LOI) and vertical burning test (UL-94) are effective techniques for assessing the 

fire-safety properties of epoxy thermosets [60,61]. The results from the two measurements are 

collected in Table 3. It is seen that a UL-94 rating of V-0 (highest rating of fire-safety 

performance) is achieved for cured PH-ODA-EP/DDM using the vertical burning test. 

Conversely, the DGEBA/DDM system is unrated with melt-dripping. Moreover, the LOI 

analysis shows that the LOI value of PH-ODA-EP/DDM reaches 40.5%, which is far higher 

than DGEBA/DDM (23.5%). The above data proves that PH-ODA-EP/DDM displays 
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superior fire-safety properties, which is mainly from the excellent char formation ability from 

the Schiff base and aromatic structure in PH-ODA-EP molecule in the combustion process 

[25,26].

Cone calorimeter test (CCT) is utilized to further examine the fire-safety performance of 

PH-ODA-EP/DDM [62]. Fig. 8 depicts the heat release rate (HRR) and total heat release 

(THR) curves of cured epoxy thermosets, and the corresponding data (THR, time to ignition 

(TTI), and peak of HRR (pHRR)) are displayed in Table 4. It is generally known that HRR 

value (especially pHRR) is an important parameter that can be served as the main indicator of 

the fire-safety properties of materials [34]. It is found that the pHRR of DGEBA/DDM is up 

to 1045.4 kW·m−2, whereas PH-ODA-EP/DDM exhibits the pHRR value of 95.3 kW·m−2, the 

reduction is about 90.9%. Similarly, the reduction in THR for PH-ODA-EP/DDM is up to 

72.0% compared with that of DGEBA/DDM (42.9 MJ·m−2 vs.153.2 MJ·m−2). These results 

clearly verify that the introduction of Schiff base structure can significantly enhance the 

fire-safety properties of epoxy matrix. According to the literature [25,26], Schiff base 

structure is cross-linkable at high temperature and forms stable cross-linking networks and 

char layer, which act as a protective layer to reduce the flammability. Besides, the TTI (18 s) 

of PH-ODA-EP/DDM is lower than DGEBA/DDM (50 s), which is ascribed to the early 

decomposition of Schiff base structure. The TTI results are in agreement with the TGA results. 

According to the literature [63], the performance of fire-safety properties (Poor, Good, or 

Excellent) for polymers can be qualitatively studied by the use of the universal Flame 

Retardancy Index (FRI). The FRI is obtained from the results (pHRR, THR, and TTI) of CCT 

and is defined by the literature (listed in Table 4) [64]. As seen from Table 4, the FRI value 
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(14.1) of PH-ODA-EP/DDM is between 10 and 102, which is the characteristic of Excellent 

performance [65]. The Excellent FRI value further proved the superior fire-safety properties 

of PH-ODA-EP/DDM with Schiff base structure.

3.5. TG-FTIR analysis of gas products

TG-FTIR is utilized to explore the gas-phase flame-retardant mechanism by detecting the 

gas products from the degradation process of PH-ODA-EP/DDM and DGEBA/DDM. Fig. 9 

(a) and (b) show the FTIR spectra of gas products at initial degradation temperature (285 oC 

for PH-ODA-EP/DDM and 390 oC for DGEBA/DDM) and maximum degradation 

temperature (300 oC and 425 oC respectively for the first and second degradation stage of 

PH-ODA-EP/DDM and 405 oC for DGEBA/DDM), respectively. The gas products of 

DGEBA/DDM and PH-ODA-EP/DDM are analyzed as below: 1170 cm-1 (ether compounds), 

1503 and 1332 cm-1 (aromatic compounds), 3658 cm-1 (phenolic compounds), 2343 and 2302 

cm-1 (CO2), 3037 and 2960 cm-1 (aliphatic hydrocarbon) [66]. Compared with the spectrum of 

DGEBA/DDM, there is a new peak (1031 cm-1) belonging to nitrogen-containing compounds 

(C-N) in the spectrum of PH-ODA-EP/DDM [67], which plays an important role of gas-phase 

flame retardancy.

3.6. Char analysis

Fig. 10 depicts the photos of the char residues of cured epoxy thermosets (after CCT). As 

seen, the DGEBA/DDM char residue is fragile and only a little char is left due to its high 

flammability and poor charring property, which agrees with the TGA result of DGEBA/DDM. 

Conversely, the PH-ODA-EP/DDM char residue exhibits dense, strong and bulky intumescent 

structure, which acts as protective layer to well isolate heat and oxygen in combustion process. 
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The above phenomenon is mainly caused by the cross-linking of the Schiff base group in 

PH-ODA-EP in combustion, which promotes the formation of intumescent char and provides 

the superior fire-safety properties of PH-ODA-EP/DDM networks [25].

Fig. 11 depicts the morphology of char residues (PH-ODA-EP/DDM and DGEBA/DDM) 

obtained from SEM. It is clearly observed that there are many open holes in the char residue 

of DGEBA/DDM, and the char residue exhibits the cracks and fissures, which is unable to 

isolate heat and gaseous compounds during combustion. Conversely, the char residue of 

PH-ODA-EP/DDM shows the compact and continuous structure with some intumescent 

bubbles on the char surface. This specific compact structure is of great importance to the gas 

and heat insulation during combustion. The results are aroused by the cross-linkable Schiff 

base structure under high temperature [26], which forms dense char layer during combustion, 

providing the superior fire-safety properties of PH-ODA-EP/DDM.

Chemical components of the char residues of PH-ODA-EP/DDM and DGEBA/DDM are 

analyzed by XPS (Table 5). As seen, for PH-ODA-EP/DDM, the contents of C and N are 

respectively 85.67% and 4.23% in the char residues, which are higher than those (80.87% and 

4.21%, respectively) of DGEBA/DDM. The results imply that the Schiff base structure in the 

PH-ODA-EP increase the proportion of C in char residue, which is because the Schiff base 

structure promotes the carbonization process via cross-linking reaction in combustion process 

[25,26]. The results are also in agreement with those of the above tests.

3.7. Thermomechanical and mechanical properties

In general, the introduction of flame retardant components into epoxy resins decreases 

other properties (thermomechanical and mechanical properties) [68,69]. Nevertheless, 
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PH-ODA-EP/DDM possesses superior fire-safety performance due to the intrinsic Schiff base 

structure, which is also beneficial to enhance the mechanical properties of epoxy networks 

[57,70]. DMA is conducted to investigate the thermomechanical performance of cured epoxy 

thermosets. Fig. 12 shows the temperature effect on the storage modulus and tanδ of the cured 

epoxy thermosets, and the corresponding parameters (storage modulus at room temperature 

(E′ at 30 oC), cross-linking density (νe), and glass transition temperature (Tg)) are collected in 

Table 6. In Fig. 12 (a), PH-ODA-EP/DDM shows far higher E′ compared with DGEBA/DDM 

in nearly the whole temperature range. Particularly at 30 ℃, the E′ of PH-ODA-EP/DDM 

reaches 6.01 GPa, which is 105.8% higher than DGEBA/DDM (2.92 GPa). The presence of 

the rigid Schiff base and aromatic structure in PH-ODA-EP molecule contributes to the high 

stiffness of PH-ODA-EP/DDM [71,72]. 

In Fig. 12 (b), the Tg (the temperature corresponding to the peak value in tanδ curve) of 

PH-ODA-EP/DDM is as high as 204.9 ℃, which shows 42.8 °C higher than DGEBA/DDM 

(162.1 °C). In general, Tg is determined primarily by the cross-link density and the structure 

rigidity of polymer [73,74]. The rigid Schiff base and aromatic structure help to reduce 

molecular chain movements, and thus increase the Tg of epoxy networks. Although 

PH-ODA-EP/DDM possesses a lower cross-link density (3.82 × 103 mol·m−3, calculated 

based on the rubbery elasticity theory [50]) compared with DGEBA/DDM (5.04 × 103 

mol·m−3), the higher Tg of PH-ODA-EP/DDM is due to that rigidity effect is the primary 

factor affecting Tg in this work. In addition, the broader tanδ peak of PH-ODA-EP/DDM 

(compared with DGEBA/DDM) is mainly caused by the stronger intermolecular interactions 

in PH-ODA-EP/DDM, which restrict the movements of chain segments and thus require a 
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wider temperature range to trigger the chain mobility [75,76]. Moreover, the secondary 

relaxation is obviously observed (between 60 oC and 80 oC) in the tanδ curve of 

DGEBA/DDM (Fig. 12 (b)), which is attributed to the local motion of the polymer chains (i.e., 

the motion of hydroxyl and ether groups) [77,78].

The tensile and flexural properties of cured epoxy thermosets are displayed in Fig. 13. 

The tensile modulus and flexural modulus of PH-ODA-EP/DDM are 6.21 GPa and 5.04 GPa, 

which are respectively 87.0% and 84.6% higher than DGEBA/DDM. The results further 

prove the high stiffness of PH-ODA-EP/DDM. Moreover, compared with DGEBA/DDM, the 

tensile and flexural strength of PH-ODA-EP/DDM are respectively increased by 42.3% and 

45.9%. The excellent mechanical properties of PH-ODA-EP/DDM are attributed to the 

introduction of rigid Schiff base and aromatic structure in PH-ODA-EP molecule [57,70]. In 

general, the synthesis of bio-based epoxy resins combining high mechanical properties and 

high Tg is the goal for high-performance epoxy resins [79,80]. In Fig. 13 (b), the Tg and 

flexural modulus of PH-ODA-EP/DDM and other biobased epoxy resins reported in the 

literature are collected [72,81-87]. In the present research, PH-ODA-EP/DDM network 

possesses the Tg of 204.9 oC, and its flexural modulus is as high as 5.04 GPa. As seen from 

Fig. 13 (b), PH-ODA-EP/DDM is located at the upper right region, which clearly proves the 

outstanding integrated performance of PH-ODA-EP/DDM.

 Fig. 14 shows the morphology of the fracture surface of PH-ODA-EP/DDM and 

DGEBA/DDM obtained from SEM. For DGEBA/DDM, the fracture surface is homogeneous 

and smooth except for some cracks, indicating the typical brittle property of DGEBA/DDM 

[88]. The fracture surface of PH-ODA-EP/DDM is relatively rough and jagged. The jagged 
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surface could absorb more energy, which leads to an increase in the amount of energy and 

force for crack propagation and the formation of new surface [89-91]. 

4. Conclusions

In this paper, we investigated a facile and sustainable route for preparing renewable 

Schiff base compounds PH-ODA and PH-ODA-EP. After cured with DDM, the Schiff base 

structure of PH-ODA-EP showed both excellent mechanical properties and fire-safety 

performance compared with DGEBA. The PH-ODA-EP/DDM possessed a char yield of 

41.7% (N2 atmosphere), which was 182% than that of DGEBA/DDM (14.8%). 

PH-ODA-EP/DDM passed V-0 rating of UL94 test (LOI value = 40.5%), and showed a 

90.9% and 72.0% decrease in pHRR and THR compared to DGEBA/DDM. Moreover, 

PH-ODA-EP/DDM showed excellent integrated properties with a storage modulus of 

6.01 GPa (30 ℃), a tensile modulus of 6.21 GPa, and a high Tg of 204.9 ℃. All these results 

suggested that PH-ODA-EP possessed great potential to replace petroleum-derived DGEBA 

in various applications. By introducing Schiff base structure, a facile and effective strategy 

was proposed in this paper for simultaneously enhancing the mechanical properties and 

fire-safety properties of bio-based polymers.
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Figure Captions

Fig. 1 A sustainable route of renewable Schiff based compounds (PH-ODA and PH-ODA-EP). 

Fig. 2 FT-IR spectra of protocatechualdehyde, ODA, PH-ODA and PH-ODA-EP.

Fig. 3 1H-NMR spectrum of (a) PH-ODA and (b) PH-ODA-EP.

Fig. 4 Exothermic curves from DSC of (a) PH-ODA-EP/DDM and (b) DGBEA/DDM curing systems.

Fig. 5 Linear plots of ln(β/Tp
2) versus 1/Tp of PH-ODA-EP/DDM and DGEBA/DDM curing systems based 

on Kissinger’s method.

Fig. 6 Viscosity of PH-ODA-EP/DDM and DGEBA/DDM as a function of temperature.

Fig. 7 (a) TGA and (b) DTG curves of cured epoxy thermosets in N2.

Fig. 8 (a) HRR and (b) THR curves of cured epoxy thermosets. 

Fig. 9 The FTIR spectra of gas products of PH-ODA-EP/DDM and DGEBA/DDM at (a) the initial and (b) 

maximum degradation temperatures.

Fig. 10 Digital photos of char residue of (a) PH-ODA-EP/DDM and (b) DGEBA/DDM after CCT.

Fig. 11 SEM photographs of (a) PH-ODA-EP/DDM and (b) DGEBA/DDM after CCT.

Fig. 12 (a) Storage modulus (E′) and (b) tan δ curves for cured epoxy thermosets.

Fig. 13 (a) Tensile and flexural properties of cured epoxy thermosets and (b) Tg and flexural modulus of 

PH-ODA-EP/DDM and literature results.

Fig. 14 SEM photos of the fracture surfaces of (a) PH-ODA-EP/DDM and (b) DGBEA/DDM.
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Tables

Table 1 Cure characteristics of the PH-ODA-EP/DDM and DGEBA/DDM curing systems

Samples

Heating 

rate

(°C/min)

Tonset

(°C)

Tp

(°C)

Tendset

(°C)

ΔT

 (°C)

ΔH∞ 

(J·g−1)
CI Ea (kJ·mol−1) R2

2.5 80.7 129.1 187.2 106.5  235.3 1.00

5 84.1 140.3 206.5 122.4

142.2

162.4

174.9

41.4

46.9

41.4

42.8

48.4

258.2 1.00

10 92.5 156.3 234.7 142.2 295.7 1.00

15 94.2 168.9 256.6 162.4 301.5 1.00

DGEBA/

DDM

20 98.3 177.6 273.2 174.9 292.5 1.00

50.4 0.998

2.5 164.9 177.3 206.3 41.4 247.3 0.41

5 177.6 194.2 219.5 41.9 237.4 0.35

10 191.3 210.4 233.5 42.2 241.2 0.24

15 199.3 221.3 246.1 46.8 277.1 0.27

PH-ODA-

EP/DDM

20 204.8 229.3 253.2 48.4 265.1 0.25

73.4 0.994

Table 2 TGA and DTG data of the cured thermosets
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Samples )(%5 CTd  )(%50 CTd  Yc (%) Rmax (%·min−1)

PH-ODA-EP/DDM 280.1 504.1  41.7 5.1

DGEBA/DDM 388.2 414.3 14.8 31.3

Table 3 Results of UL-94 and LOI tests for cured epoxy thermosets

Samples LOI (%) t1+t2 (s) Dripping UL-94 rating

PH-ODA-EP/DDM 40.5 0.5±0.1 No V-0

DGEBA/DDM 23.5 Last burning Yes No rating

Table 4 CCT data for cured epoxy thermosets 

Samples TTI (s) pHRR (kW·m−2) THR (MJ·m−2) FRI

PH-ODA-EP/DDM 18 95.3 42.9 14.1

DGEBA/DDM 50 1045.4 153.2 1.0

Table 5 XPS analysis of char residues after CCT

Samples C (wt %) O (wt %) N (wt %)

PH-ODA-EP/DDM 85.67 10.19 4.23

DGEBA/DDM 80.87 14.92 4.21

Table 6 Key parameters collected from DMA for cured epoxy thermosets

Samples E′ at 30 oC (GPa) Tg (℃) νe (103 mol·m−3)
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DGEBA/DDM 2.92 162.1 5.04

PH-ODA-EP/DDM 6.01 204.9 3.82
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Highlights

 A novel biomass-derived epoxy thermoset was synthesized from Schiff base compound.

 Schiff base structure promotes char formation and reduces the fire hazards of epoxy 

thermoset.

 The new epoxy thermoset exhibits superior mechanical properties and high glass 

transition temperature.

 This paper provides a new strategy for simultaneously enhancing the mechanical 

properties and fire-safety performance.


