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Abstract: With the aim of characterising a commercially available epoxy adhesive used for fibre-reinforced 12 

polymers strengthening applications, when submitted to different environmental conditions, mainly thermal 13 

(TC), freeze-thaw (FT), and wet-dry (WD) cycles and immersion in pure (PW) and water with chlorides (CW) 14 

for periods of exposure that lasted up to 16 months, an experimental program was carried out. Several 15 

methodologies were used in its characterization, mainly the scanning electron microscope (SEM), dynamic 16 

mechanical analysis (DMA), standard tensile tests (STT) coupled with digital image correlation (DIC). In 17 

general the results revealed that the chemical composition was not affected by the environmental conditions. 18 

Nevertheless, it was verified through DMA and STT that the modulus of elasticity and tensile strength of the 19 

epoxy adhesive increased in the TC, while the specimens submitted to PW and CW faced a high degradation in 20 

terms of its mechanical properties. Eventually, the glass transition temperature (Tg) was not affected by the 21 

environmental conditions, apart from the specimens subjected to TC and FT, presenting a higher and lower Tg, 22 

respectively, when compared with the reference specimens. 23 

 24 

Keywords: A. Thermosetting resin; B. Chemical properties; B. Mechanical properties; D. Thermal analysis; 25 

Durability. 26 

 27 
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1 INTRODUCTION 1 

In last decades, the use of fibre reinforced polymer (FRP) materials on the strengthening of existing structures 2 

has been becoming a viable alternative to conventional materials like steel and concrete. The bond between the 3 

strengthened structural elements and the FRP material plays an important role on the success and efficiency of a 4 

strengthening system. Structural epoxy adhesives are commonly used as bonding agent because they provide the 5 

required load transfer between both materials, i.e. reinforcing material and the substrate. Several studies have 6 

shown that these FRP materials applied with proper strengthening techniques (e.g. externally bonded or near-7 

surface mounted), improve the ultimate load carrying capacity and the serviceability aspects of the reinforced 8 

concrete (RC) elements e.g. [1-4]. 9 

The long-term performance (including the durability) of the retrofitted structures is a critical issue in 10 

terms of keeping the structural safety, since these structures are subjected to environment conditions and, 11 

consequently, its performance can be compromised due to the degradation of the composing materials. 12 

Furthermore, potential synergies can exist between individual physical and environmental factors when, for 13 

example, the material/structural element is subjected a sustained load and moisture simultaneously [5]. 14 

The temperature is one of the main environmental factors that limits the application range of structural 15 

epoxy adhesives. When the material achieves a temperature equal or above the glass transition temperature (Tg), 16 

a sudden change in its properties occurs: from a hard and relatively brittle state into a rubber-like state. However, 17 

this value only limits applicability, since the transition from solid to a viscous state is a continuous process over 18 

a certain temperature range (of about 10-20 °C) [6]. 19 

Mechanical properties such as strength and stiffness of epoxy adhesives are directly influenced by curing 20 

conditions, under which cross-linking of the polymer chains has to take place. The curing temperature plays an 21 

important role on the curing of epoxy adhesives [6, 7]. Moreover, depending on the type of epoxy adhesives it is 22 

usually observed a post-curing process when the material is submitted to a temperature higher than the one at the 23 

first cure. The post-curing phase can increase the mechanical properties of the material, even though the curing 24 

degree increase only marginally [7, 8]. The same process of post-curing is observed when the temperatures in the 25 

epoxy temporally exceed the Tg, and the Tg also increases itself [6]. Moreover, cooling the adhesive from 26 

temperatures above Tg to temperatures below Tg result into a full recovery of its mechanical properties [9]. 27 

Other environmental factors, such as humidity, salinity and UV radiation, can lead to the ageing and 28 

consequently, affecting the long-term performance of adhesive due to the reduction of its mechanical properties 29 

[10]. Moisture and water penetration can lead to properties changes as a consequence of physical and chemical 30 
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transformations [11, 12]. Epoxy adhesives absorb water because they contain polar groups which attract water 1 

molecules. Consequently, water can change in a reversible manner the polymer properties through plasticization. 2 

This phenomenon involves a considerable reduction of stiffness and strength. Moreover, water can also change 3 

the mechanical behaviour of thermosetting resins in an irreversible manner, if hydrolysis or cracking occur [11-4 

14]. Hydrolysis of epoxies involve chemical reactions at the molecular level, which include chain scission. It 5 

should be stated that the effects of water absorption are only harmful for humidity levels higher than 75% [11]. 6 

El Yagoubi et al. [12] performed a research work with the aim of studying the hygrothermal ageing of an 7 

anhydride-cured epoxy under temperature and hygrometry conditions, in which the epoxy adhesive was 8 

submitted to thermal cycles (12 h at 70 °C and 90% of relative humidity (RH) following by 15 min at −40 °C) up 9 

to a maximum of 3000 cycles. They observed that the water uptake caused a rapid increase of about 1% of mass 10 

after the soak time in epoxy, resulting in a decrease (about 13%) of the Tg during the first 200 cycles, and a 11 

slowly increased between 250 and 1000 cycles was observed. After that, the Tg remained constant until the end 12 

of the ageing action. The authors of this work also observed a correlation between the evolution of the modulus 13 

of elasticity (E-modulus) and the Tg during the ageing action, which it lead to conclusion that the evolution of 14 

both parameters resulted from the same processes.  15 

Lin and Chen [15] performed a research work where the moisture sorption-desorption-resorption 16 

characteristics of an epoxy system was investigated by hydrothermal ageing in order to verify the effects of 17 

moisture on the mechanical behaviour. Uniaxial tensile tests were carried out in specimens submitted to 18 

following conditions: (i) not aged; (ii) saturated (preconditioned under hygrothermal conditions: 85 °C and 19 

85%RH); (iii) completely desorbed (dry under thermal conditions of 85 °C); and, (iv) re-saturated (re-20 

preconditioned under hygrothermal conditions, 85 °C/85%RH). They verified that the E-modulus and tensile 21 

strength were reduced at about 42% and 54% respectively in the case of resorption, due to the hygrothermal 22 

effect. Also, the fractographic analysis showed that the absorbed moisture can modify the type of failure mode of 23 

the polymer from brittle to ductile for the not aged and saturated specimens.  24 

In the study performed by Fonseca et al. [16] some specimens of epoxy adhesive were placed during 18 25 

months at different environmental conditions: (i) continuous condensation; (ii) immersion in demineralised 26 

water; (iii) immersion in salt-water; and, (iv) immersion in alkaline solution. Furthermore, these wet 27 

environments were performed at temperatures of 40 °C and 60 °C. The results showed a decrease in mechanical 28 
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properties in all immersion conditions, and higher temperatures caused further degradation. Alkaline immersion 1 

at 40 °C revealed as the most aggressive condition presenting a tensile strength retention of about 14%. 2 

Yang et al. [17] carried out a similar experimental program to the one performed by Fonseca et al. [16] 3 

over a maximum period of 24 months. They concluded that immersion in deionized water at 60 °C causes a 4 

significant decrease in strength (about 69%) and E-modulus (about 68%) within the first 6 months, much higher 5 

than under others conditions (deionized water at 23 °C and 38 °C; salt-water and alkaline solution at 23 °C). The 6 

main reason for such decrease pointed out was related to the temperature used for ageing the specimens. And 7 

like others authors [16, 18], Yang et al. [17] concluded that the temperature is an important factor that increase 8 

the rate of diffusion and amplifies the degradation caused by the different immersion conditions, suggesting a 9 

greater level of damage development at the interfaces of the fillers and resulting in matrix microcraking. 10 

Comparing only water immersion environments at 23 °C, over a period of 24 months of immersion, the samples 11 

in alkali solution showed the maximum deterioration in both tensile strength (about 53%) and E-modulus (about 12 

41%) [17]. 13 

The aeronautic industry and other advanced industries/technologies have been studying in an exhaustive 14 

manner epoxy adhesives. The conclusions came up from these investigations cannot be directly extended to 15 

FRP/epoxy systems applied to structural rehabilitation, since the corresponding environmental conditions, 16 

substrate and loading are distinct. Furthermore, the curing period and temperature are two important 17 

characteristics of structural adhesives that should be taken into account in the global behaviour. The existing 18 

information about the most used epoxies in the ambit of FRP/epoxy systems applied to structural rehabilitation is 19 

scarce. Therefore, the main goal of the present work is the assessment of a commercial structural epoxy adhesive 20 

commonly used in FRP strengthening systems when submitted to different environmental conditions. For this 21 

purpose, an experimental program was carried out in which epoxy specimens were submitted to different 22 

environmental conditions (thermal, freeze-thaw and wet-dry cycles and immersion in pure and water with 23 

chlorides) during periods of exposure up to 16 months. Several methodologies were used in its characterization, 24 

mainly the scanning electron microscope, dynamic mechanical analysis and standard tensile tests coupled with 25 

digital image correlation. The experimental program is described and the main results are presented and 26 

discussed. 27 

 28 
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2 EXPERIMENTAL PROGRAM 1 

2.1 General characteristics of the epoxy adhesive 2 

The structural epoxy adhesive studied, widely used in retrofitting existing reinforced concrete structures with 3 

CFRP laminate strips, is produced by S&P® Clever Reinforcement Company and its trademark is “S&P Resin 4 

220 epoxy adhesive”. This epoxy adhesive is a solvent free, thixotropic and grey two-component (Component A 5 

= resin, light grey colour and Component B = hardener, black colour). According to the available information 6 

provided by the manufacture, the chemical composition of component A includes Bisphenol A (20% to 25%) 7 

and 1,3-bis(2,3-epoxypropoxy)-2 2-dimethylpropane (5% to 10%), whereas the Component B includes Poly 8 

(oxypropylene) diamine (20% to 25%), Piperazine (1% to 2.5%) and 3,6-diazaoctanethylenediamin and 9 

Triethylenetetramine (20% to 25%). According to the manufacturer, after mixing the two components, the 10 

homogenized compound density is 1.70 to 1.80 g/cm3 and has the following mechanical properties [19]: (i) 11 

compressive strength >70 MPa; (ii) tensile E-modulus >7.1 GPa; (iii) shear strength >26 MPa; (iv) adhesive 12 

tensile strength to concrete or CFRP laminate >3 MPa (after 3 days of curing at 20 °C). The recommended 13 

application temperature is between +10 °C and +35 °C. Recent studies [20] proved that this epoxy at 20 °C 14 

exhibits during the first 6 hours a dormant period with a nearly null stiffness, followed by a drastic increase in 15 

the stiffness in the next 18 hours, reaching at the end of this period 90% of its maximum value. 16 

 17 

2.2 Specimens and environmental exposure conditions 18 

The specimens used in the present work were produced according to “type 1A” defined in EN ISO 527-2:2012, 19 

as represented Fig. 1a. The mixture of two resin components was made manually and then the homogenized 20 

compound was cast into a Teflon moulds. Then, it was placed an acetate sheet on the top surface and pressed 21 

with a steel roller. All these procedures were carefully performed in order to assure specimens with nominal 22 

geometry and homogeneity by avoiding as much as possible voids. The specimens were removed from the 23 

moulds one day after casting and then they were kept in lab with an average temperature around 22 °C and 24 

relative humidity close to 55% during at about one year before being submitted to the corresponding ageing 25 

actions. 26 

Table 1 summarizes the thirteen series of the present experimental program being each series composed 27 

of 6 specimens. A total of 78 specimens were submitted to different environmental conditions for a period of 28 

time that lasted up to 480 days, depending the type of environmental exposure.  29 
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During the experimental program all the reference specimens (REF) were kept in the lab environment. 1 

Reference specimens were tested at the beginning (REF0), middle (REF240) and end of the experimental 2 

program (REF480). 3 

To evaluate the moisture effect on the performance of the studied epoxy adhesive, the additional three 4 

environmental actions were considered: (i) specimens immersed in pure water at 20 °C (PW); (ii) specimens 5 

immersed in water with 3.5% chlorides at 20 °C (CW); and, (iii) specimens submitted to wet-dry cycles in water 6 

with 3.5% chlorides at 20 ºC (WD). The percentage of chlorides adopted was based on the ASTM D1141-98 7 

[21], which recommends a concentration of 2.453% of NaCl in order to simulate a seawater. However, with the 8 

aim of obtaining a more severe and aggressive environment and accelerate the degradation mechanisms, 3.5% 9 

concentration of NaCl was adopted since the salinity of seawater is around 3.5% [22]. For these series half the 10 

specimens were submitted to these actions during 240 days (PW240, CW240 and WD240), whereas the other 11 

half continued this ageing tests up to 480 days (PW480, CW480 and WD480). 12 

The effect of thermal actions were analysed through two different environmental exposures, namely, 13 

thermal (TC) and freeze-thaw (FT) cycles. For each test, the specimens were aged during 120 days (TC120 and 14 

FT120) and during 240 days (TC240 and FT240), and each cycle lasted a 24 hours of duration. The TC program 15 

was based on EN 13687-3:2002 standard and the applied temperatures ranged between −15 °C and +60 °C, with 16 

plateaus that lasted 12.5 and 10 hours, respectively. The transitions between these two temperatures took 1.5 17 

hours. In the FT program, temperatures ranged from –18 °C to +20 °C according to CEN/TS 12390-9:2006 18 

standard, with plateaus that lasted 3 and 13 hours, respectively. The transitions from positive to negative and 19 

negative to positive temperatures took 3 hours and 5 hours, respectively. The specimens were immersed in water 20 

at positive temperatures.  21 

 22 

2.3 Methods of characterization 23 

2.3.1 Scanning electron microscope 24 

Observation in Scanning Electron Microscope (SEM) was done on reference specimens (REF0 and REF480) and 25 

specimens submitted to environmental actions (TC, FT, PW CW and WD). The observation has been done in 26 

back-scattered electrons mode (BSED), to provide information about the chemical structure of the present 27 

phases, in the inorganic charges. The observation was complemented by the possibility of doing micro-analysis 28 

by energy dispersive spectrometry (EDS). The surface of the samples was prepared for observation by grinding 29 
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(SiC paper) and polishing (with diamond particles of 6 and 1 µm). Phase distribution in the composite and the 1 

presence of internal defects were verified for samples with different types of environmental actions. 2 

 3 

2.3.2 Dynamic mechanical analysis 4 

The Dynamic Mechanical Analysis (DMA) is a technique most useful for studying the viscoelastic behaviour of 5 

polymers, where an oscillating force is applied to the sample and the corresponding material’s response to that 6 

force is analyzed [23]. With the DMA, the complex modulus, elastic modulus (E-modulus) and loss modulus are 7 

determined from the material response to the sine wave. These moduli allow a better characterization of the 8 

material properties since it is possible to observe the capacity of the material to store energy (E′ – storage 9 

modulus) and to lose energy (E″ – loss modulus) [23]. With DMA it is also possible to evaluate the (tan δ) by 10 

calculating the ratio between E′ and E″ entities which is usually denominated by damping. 11 

The determination of the viscoelastic behaviour represented by the E′ and E″ and their damping 12 

characteristics of the specimens, was performed with the TA DMA Q-800 equipment, using a single-cantilever 13 

configuration. The specimen’s geometry was 35 mm long, 5 mm wide and 1 mm thick. These tests were 14 

performed by the application of a constant amplitude (5 µm) with a frequency sweep (1, 5 and 10 Hz) at a 15 

temperature of 24 ºC. The aim of these frequencies was comparing the response at low frequency (close to a 16 

static test) to intermediate and very high and frequencies. Additionally, the dynamic E-modulus (E∗ ) of the 17 

samples was determined using Eq. (1) [23]. 18 

2 2E E E∗ ′ ′′= ⋅  (1) 

In order to determine the glass transition temperature (Tg), the specimens were subjected to a temperature 19 

ramp from room-temperature to 120 °C with a heating rate of 2 °C/min in an inert nitrogen atmosphere. These 20 

tests were carried out by the application of a constant amplitude (5 µm) with a frequency of 1 Hz. The Tg was 21 

calculated from two distinct methods: (i) the onset of the storage modulus curve drop, as represented in Fig. 4a; 22 

and (ii) the peak value of loss modulus curves as shown in Fig. 5. The first and second methods will be 23 

represented in the following sections by means method E′ and E″, respectively. More information about these 24 

methods can be found in [6, 24]. 25 

 26 

 27 

 28 
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2.3.3 Standard tensile test 1 

The standard tensile tests (STT) were performed according to EN ISO 527-1:2012. The epoxy samples were 2 

tested on universal testing machines under displacement control of 1 mm/min. The applied load was measured 3 

with a load cell of 50 kN maximum carrying capacity. In order to measure the longitudinal strain, a strain gauge 4 

(SG) (TML BFLA-5-3-3L) was installed at mid-length of the specimen, as can be seen in Fig. 1b. Before 5 

performing the tensile tests, the thickness and width of each single specimen were measured with a digital 6 

calliper (0.01 mm of precision) in three distinct sections (middle height and two at 1 mm apart to the former). 7 

Based on these measurements the average cross-section area was determined for assessing the longitudinal 8 

normal stress. E-modulus was calculated as the slope of the secant line between strain values of 0.05% and 9 

0.25% on the stress-strain curve. 10 

 11 

2.3.4 Digital image correlation 12 

The digital image correlation (DIC) technique was used in this work as a complementary method for monitoring 13 

the deformations and strains during the standard tensile tests (STT), instead of using strain gauges. DIC provides 14 

full-field displacements of a target objects. Therefore, it can allow to verify the existence of homogeneous strain 15 

field of the tested material and measure the strains in both directions in contrast to the single element strain 16 

gauge used in the present work. DIC has been increasingly used in experimental mechanics, being, however, its 17 

relevance more emphasised when gradient deformation fields are expected to occur across the region of interest. 18 

The STT of the series REF480 were coupled with DIC as shown in Fig. 1d. In this optical method, the 19 

displacements of a speckled surface are measured by correlating images recorded at successive deformation 20 

stages. In the matching (correlation) process, the reference (undeformed) image is divided into subsets whose 21 

size defines the displacement spatial resolution. The specimens monitored with DIC were prepared by applying a 22 

speckle pattern on the region of interest (ROI), produced by applying a thin coating of white matt followed by a 23 

spread distribution of black dots using spray paint, see Fig. 1c. The ARAMIS DIC-2D software was used in this 24 

work [25, 26]. The optical system was equipped with an 8-bit Baumer Optronic FWX20 camera coupled with an 25 

Opto-Engineering telecentric lens TC 23 09, yielding a magnification factor of 18 µm/pixel. Two Raylux 25 26 

white-light LED sources were used to assure uniform illumination with suitable image contrast. The target ROI 27 

was set to10 × 30 mm2 at the centre of the specimen (see Fig. 1c). The DIC parameters were carefully chosen in 28 

order to obtain the best compromise between spatial resolution and accuracy. A subset size of 15 × 15 pixels2, a 29 

subset step of 13 × 13 pixels2, and a strain gauge length of 5 subsets were therefore selected. This set of 30 
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parameters defined a displacement spatial resolution in displacement and strain of 0.27 mm and 1.35 mm, 1 

respectively. Moreover, a resolution in displacement and strain of 1.12×10-2 pixel (0.2 µm) and 1.34×10-2 was 2 

achieved, respectively. 3 

 4 

3 RESULTS AND DISCUSSION 5 

3.1 Chemical composition 6 

Two typical SEM observations are shown in Fig. 2, namely the reference specimen (REF0) and specimen after 7 

being submitted to pure water (PW480) immersion. High density and uniform distribution of mineral fillers and 8 

some air bubbles were observed. The existing main phases in this studied epoxy adhesive are: (i) silica (very 9 

likely quartz); (ii) Ca, Na, Mg silico-aluminates, probably a micaceous mineral; (iii) barium sulphate; and, (iv) 10 

titanium oxide. The maximum particle size is around 200 µm. The SEM observations showed that the specimens 11 

submitted to environmental conditions over long periods of time did not present changes in chemical 12 

composition, when compared to reference. 13 

 14 

3.2 Dynamic thermomechanical properties 15 

Fig. 3 represents the evolution of average dynamic E-modulus (E∗ ) and damping (tan δ) obtained by frequency 16 

sweep at 1, 5 and 10 Hz. For 1 Hz of frequency, the values of dynamic E-modulus are presented in Table 2 and 17 

were calculated according to the equation (1). Dynamic E-modulus slightly increased with the increase of the 18 

frequencies. This observation was confirmed by previous works, e.g. [27]. Similar trend was observed for all the 19 

tested series. Comparing the values of dynamic E-modulus of reference specimens (REF480) with the aged ones, 20 

it is possible to point out (i) a significant decrease for the series PW, CW and WD, approximately 19%, 13% and 21 

5% respectively, and (ii) a significant increase for the series TC240 of about 22%.  22 

The dynamic E-modulus of reference specimens (REF0, REF240 and REF480) did not approximately 23 

present the same values. These differences can be related to the fact that the samples have been obtained from 24 

distinct mixtures. According to other research works [20, 28] performed with the same epoxy adhesive, the 25 

mechanical properties of this adhesive presents slight variations for different mixtures even carried out from the 26 

same container and with the same curing conditions.  27 

The decrease of the dynamic E-modulus in series PW, CW and WD may be directly related to the level of 28 

plasticization of the adhesive when water uptake occurs [14]. Additionally, it can be also concluded that the 29 

chlorides decelerated the degradation (in comparison with series PW) since the molecules of salts work as a 30 
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semipermeable membrane. Regarding to the series TC, the post-curing of the epoxy adhesive caused by applied 1 

thermal cycles yielded an improvement in its mechanical properties [9, 29]. More details about these 2 

observations will be discussed in further sections. Regarding to the evolution of (tan δ), similarities in terms of 3 

results for all the series (reference and aged) are observed, as shown in Fig. 3b, mainly on series PW480 and 4 

CW480 being out of this trend. The damping decreased with the increase of frequencies, which indicates a 5 

higher energy dissipation at low frequency. Probably, the damping behaviour is sensitive to the polymer-particle 6 

interaction state and hence mainly governed by the structure of epoxy network (crosslink density). The higher 7 

dissipation of energy of specimens PW480 and CW480 can be justified by degradation of these connections due 8 

to the environmental conditions. 9 

Fig. 4 shows the evolution of the storage modulus with temperature obtained from DMA tests of all the 10 

tested series, whereas Fig. 6 presents the Tg assessment through the two distinct methods described in Section 11 

2.3.2, i.e. (i) the onset of the storage modulus curve drop (method E′) and (ii) peak of loss modulus (method E″). 12 

In general the storage modulus exhibit a large decrease with the increase of the temperature, particularly when 13 

the glass transition region is reached, which reflects the changes in the viscoelastic polymer matrix of adhesive 14 

with the increase of the temperature. When compared with the reference specimens, the shape of the storage 15 

modulus curves of specimens submitted to environmental conditions did not present so remarkable drop. 16 

However, it is possible to be observed for all aged specimens a lower slope in the glass transition region 17 

comparing to reference one. For the specimens subjected a higher period of exposure, this aspect is more 18 

pronounced, apart from the TC series. This change in the slope can be attributed to the physical degradation 19 

(plasticization) in the network chains promoted by water absorption. However, the filler content seems to show 20 

an important factor on the elastic properties in vitreous and rubbery regions since the specimens exhibited a 21 

considerable initial moduli in spite of the high degradation of network chains [30, 31]. 22 

From Fig. 6, it is possible to observe that the assessment of Tg is highly dependent on its evaluation 23 

technique, as can be verified in others works, e.g. [6]. Comparing the two methods, the most conservative 24 

approach is when the onset point T0 at the tangent intersection is used. The maximum difference found when the 25 

two approaches are used for assessing the Tg is at about 15 °C (specimen TC120). These conclusions underline 26 

the need of a clarification and unification of the guidelines about the procedure on how to determine Tg, as 27 

pointed out by other researchers [6]. 28 

In spite of Tg had been assessed by two distinct methods, for the present analysis values obtained from 29 

method E′ are selected since this method is the most widely used. The results of Tg obtained for different periods 30 
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of exposure were lower than the reference specimen, being the higher variations of about 21% for CW240 1 

(Tg=42.4˚C) and 23% for FT (Tg=41.5˚C) series. The results of Tg obtained for specimens submitted to water 2 

environments would be expected due to the plasticization phenomenon occurred during the period of exposure. 3 

In the case of specimen FT240, the lower Tg can be related with an interruption of the curing along time [32]. As 4 

expected, the Tg of TC240 was slightly higher than reference specimen (REF240), of about 3%. This is 5 

consequence of stronger chain cross-linking as pointed out in bibliography [9, 33].   6 

 7 

3.3 Tensile mechanical properties 8 

Fig. 7 shows typical stress-strain curves obtained from the tensile tests. The average values of the main 9 

parameters obtained from the tensile tests mainly, the tensile strength (fult), the ultimate strain (εult) and the E-10 

modulus (Estd) are presented in Table 2. The average curves presented in Fig. 7 were obtained averageing all the 11 

specimens composing the series (6 specimens per series); however, the average curve is interrupted at onset of 12 

the failure of the first specimen in the series. This figure does not include the strain-stress curves of series TC 13 

due to the technical problems faced at the very beginning of the corresponding tests during the acquisition of the 14 

strains. When compared with the reference series, the mechanical properties (tensile strength and E-modulus) of 15 

aged series presented distinct trend: (i) increased for the series TC120 and TC240; (ii) slightly decreased for the 16 

series FT120 and FT240; and, lastly, (iii) significant decreased for the series PW, CW and WD. These 17 

conclusions are also underlined by the observation of the curves presented in Fig. 7 and the results summarized 18 

in Fig. 8. The differences in terms of the mechanical properties observed for the series REF0, REF240 and 19 

REF480 have been previously justified (see section 3.2). 20 

The tensile strength increased on the series TC120 and TC240 at about 25% and 33%, respectively, when 21 

compared to REF240. Although the technical data sheet of the epoxy adhesive does not give any information 22 

regarding the curing and post-curing process, this behaviour has been reported in the literature. Moussa et al. [9] 23 

observed for another epoxy adhesive similar behaviour, i.e. a post-curing phase which improved its mechanical 24 

properties. This process occurs when temperatures higher than the ones experienced at the first curing are 25 

achieved. Fig. 8 also highlights higher increase of strength than stiffness, due to the following main reasons: (i) 26 

strength is more related with the polymeric structure regarding an increase in chain branching and molecular 27 

bond strength; (ii) the fillers incorporated in the epoxy adhesive contribute more to the stiffness than the 28 

strength. Consequently, the changes in the polymeric structure influenced more the changes in strength than the 29 

changes in stiffness [33]. 30 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

12 
 

Regarding to the series FT, the expected tendency was observed, i.e. some degradation on the mechanical 1 

properties with the ageing. In fact, the tensile strength on specimens with 120 and 240 days of ageing decreased 2 

11% and 17%, respectively. In spite of both ages presented an important decrease in terms of such mechanical 3 

property, apparently higher rates of degradation occurs at early stages, since the series FT120 presents a higher 4 

degradation for a period of 120 days than the FT240 for a period of 240 days. The stiffness also decreased 11% 5 

and 17% with 120 and 240 days of ageing, respectively. The degradation processes of stiffness can be the same 6 

of strength since the decrease of stiffness follows the trend of strength variation. Although the adhesive had been 7 

submerged in water, and the hydrolysis phenomenon had occurred, the diffusion and reaction processes are 8 

significantly slower for negative temperatures [12]. Finally, it should be referred for these series a post-curing 9 

phase was not occurred since the applied temperatures ranged in between –18ºC and +20ºC. 10 

The remaining three series (PW, CW and WD) presented the higher degradation ratios, when compared 11 

with series TC and FT. As previously stated, time can be a major factor on the evolution of the mechanical 12 

properties because these specimens were aged for longer periods of time. All comparisons have been made to the 13 

REF480 (kept in lab environment for 480 days). Results show that specimens immersed on pure water had the 14 

greatest degradation ratio (35% and 38% for PW240 and PW480, respectively). Epoxy adhesives absorb water 15 

and, as a consequence, they plasticize, increase their volume and their mechanical properties are enfeebled, 16 

namely stiffness, tensile strength and the glass transition temperature [12, 14, 32]. El Yagoubi et al. [12] explains 17 

that the hydrolysis phenomenon observed on materials exposed to wet-dry cycles, is characterized by a chemical 18 

reaction at the molecular level that destroys the mollecular chains. 19 

Comparing the results obtained for the specimens submitted to pure water (PW) with specimens 20 

immersed in water with chlorides (CW), the stiffness of the formers was more affected than the lastests (47% 21 

and 35% for PW480 and CW480, respectively). The reason for such behavior is related to the fact that in 22 

aqueous environments the cross-linked matrix behaves as semi-permeable membranes, where only the water can 23 

permeate and the large inorganic ions are obstructed, as previuously stated [34]. In essence, the mechanical 24 

properties of the epoxy adhesive are affected due to the presense of water. An exception was observed on series 25 

S4 where the a post-curing phase might be responsible for the increse on the mechanical properties. 26 

The E-modulus (Estd) obtained by standard tensile test are very close to the dynamic E-modulus (E*), as 27 

can be demonstrated by the E* / Estd  ratio (see Table 2). By default higher values for E-modulus are expected 28 

when dynamic methods are used, as reported by the literature. In general, for the present case this trend was 29 

observed. 30 
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As previous mentioned, the DIC method was used for simultaneously measuring the axial and transverse 1 

strains in tensile tests of an epoxy adhesive for the series REF480. Fig. 9 shows the typical relationship between 2 

axial (1) and transversal (2) strains obtained for one specimen of series REF480. The Poisson’s ratio (ν) was 3 

calculated as the slope of the linear trend line of the experimental values of the strains in both directions, 4 

gathered until 0.2% of the axial strain (ε1) values, as can be seen in Fig. 9. From the tested specimens of the 5 

series REF480, an average of Poisson’s ratio value of 0.27 with a coefficient of variation (CoV) of 2.59% was 6 

obtained (see Table 3). Moreover, Table 3 includes the coefficient of determination (R2) values for each curve 7 

obtained by the fitting method, resulting in an average value of 0.995. This value demonstrates that, in the 8 

considered range of strain values, the experimental curve is almost linear. 9 

 10 

4 CONCLUSIONS 11 

In the present study, the effects of the different environmental conditions on a commercial epoxy adhesive used 12 

on the strengthening of RC structures were analysed and discussed. From the obtained results the following main 13 

conclusions can be pointed out:  14 

(i) The observations in Scanning Electron Microscope revealed that all the tested specimens were very 15 

similar. The specimens submitted to environmental conditions did not present changes in their 16 

chemical composition when compared with the reference specimens; 17 

(ii)  Dynamic E-modulus increased with the increase of the frequencies. Moreover, the specimens 18 

submersed in pure water and water with 3.5% of chlorides presented a higher decrease of dynamic 19 

E-modulus, of about 19% and 13%, respectively, comparing to the reference specimens. As 20 

opposed the thermal cycles caused a increase of about 22%.  21 

(iii)  For all specimens, the damping decreases significantly with the increase of frequencies. The 22 

specimens exposed to pure water and water with the chlorides showed a higher dissipation of 23 

energy than the remaining specimens. The higher dissipation of energy of these specimens can be 24 

justified by degradation of connections between polymer-particle due to the environmental 25 

conditions since the damping behaviour is sensitive to the structure of epoxy network. 26 

(iv) The storage modulus curves of all aged specimens presented a lower slope in the glass transition 27 

region comparing to reference ones. For the specimens subjected a higher period of exposure, this 28 

aspect is more pronounced, apart from the TC series. This change on the slope can be attributed to 29 

the degradation in network chains promoted by water absorption. The filler content seems to show 30 
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an important factor on the elastic properties in vitreous region since the specimens showed a 1 

considerable initial moduli in spite of the high physical degradation (plasticization) in the network 2 

chains. 3 

(v) The Tg values of specimens submitted to different environmental conditions were negatively 4 

affected, mainly the specimens exposed to chlorides water and freeze and thaw cycles, with a 5 

relative decrease of about 21% and 23%, respectively. The exposure to wet environments may have 6 

had as consequence the plasticization of adhesive and the negative temperatures might have 7 

interrupted the curing along time. 8 

(vi) From the tensile tests, it was observed an increase up to 33% and 15% on the ultimate tensile stress 9 

and E-modulus for the series submitted to thermal cycles, respectively. The thermal cycles might 10 

have caused a post-curing phase that could explain the increase on the epoxy specimens strength 11 

and stiffness, as verified in dynamic thermomechanical analysis. In addition, it was observed a 12 

decrease on the tensile strength and E-modulus for the freeze-thaw cycles samples. 13 

(vii)  A generalized decrease on the ultimate tensile stress and E-modulus for series PW, CW and WD up 14 

to 47% and 38%, respectively. These reductions of mechanical properties were observed due to the 15 

presence of water. This epoxy material seemed susceptible to the degradation mainly when it is 16 

immersed in pure water due to the occurrence of plasticization phenomena. 17 

(viii)  The DIC method was used for assessing to the axial and transverse strains during the tensile tests of 18 

the studied epoxy adhesive: from the tests carried out a Poisson’s ratio of 0.27 was obtained. 19 

 20 
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Table 1 — Environmental exposure conditions. 

Environmental condition Series ID 

Reference REF0, REF240, REF480 

Immersion in pure water PW240; PW480 

Immersion in water with chlorides (3.5% NaCl) CW240; CW480 

Wet and dry cycles in water with chlorides (3.5% NaCl) WD240; WD480 

Thermal cycles (between −15 °C and +60 °C) TC120; TC240 

Freeze-thaw cycles (between −18 °C and +20 °C) FT120; FT240 
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Table 2 — Tensile mechanical properties and dynamic E-modulus. 

Environment 

exposure 
fult [MPa] εεεεult [%] Estd [GPa] E* [GPa] E* / Estd  

REF0 22.0 (4.5%) 0.36 (15.2%) 7.15 (3.7%) 7.02 (0.2%) 0.98 

REF240 20.7 (1.0%) n/a n/a 6.14 (0.2%) n/a 

REF480 20.8 (2.2%) 0.43 (6.1%) 6.66 (3.4%) 5.94 (0.2%) 0.89 

PW240 13.6 (4.9%) 0.55 (23.8%) 4.10 (3.0%) 5.03 (0.1%) 1.23 

PW480 13.0 (2.1%) 0.75 (14.1%) 3.52 (3.3%) 4.81 (0.1%) 1.37 

CW240 15.3 (2.9%) 0.50 (10.6%) 4.72 (3.5%) 5.47 (0.2%) 1.16 

CW480 15.0 (1.7%) 0.68 (11.4%) 4.36 (1.5%) 5.14 (0.3%) 1.18 

WD240 16.6 (4.2%) 0.39 (18.2%) 5.43 (2.8%) 5.80 (0.1%) 1.07 

WD480 16.5 (2.5%) 0.51 (13.6%) 5.20 (3.2%) 5.66 (0.1%) 1.09 

TC120 25.9 (4.0%) 0.39 (10.8%) 7.50 (3.2%) n.a. n/a 

TC240 27.3 (2.3%) 0.43 (5.3%) 7.64 (4.7%) 7.22 (0.2%) 0.95 

FT120 18.6 (0.6%) 0.48 (6.1%) 5.93 (1.4%) n/a n/a 

FT240 17.2 (2.5%) 0.45 (11.8%) 5.54 (1.8%) 6.21 (0.1%) 1.12 

Notes: The values between parentheses are the corresponding coefficients of variation. 
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Table 3 — Poisson’s ratio assessment. 

Specimen  Poisson’s ratio, ν R2 

REF1 0.26 0.997 

REF2 0.26 0.996 

REF3 0.28 0.998 

REF4 0.28 0.992 

REF5 0.27 0.994 

REF6 0.26 0.996 

REF7 0.27 0.991 

Average 0.27 (CoV=2.59%) - 
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Fig. 1 — (a) Specimen’s geometry (all units are in millimetres); (b) Tensile test overview; (c) Detailed view of 
pattern use with DIC method; (d) DIC set-up. 
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Fig. 2 — SEM images: (a) chemical composition of reference specimen; (b) specimen after being submitted to 
pure water environmental action. 
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Fig. 3 — Viscoelastic properties at different frequencies: (a) dynamic E-modulus and (b) Tan δ. 
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Fig. 4 — Evolution of the storage modulus with the temperature for specimens submitted to: (a) pure water; (b) 
water with chlorides; (c) wet and dry cycles in water with chlorides; (d) thermal and freeze-thaw cycles. 
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Fig. 5 — Evolution of the loss modulus with the temperature for specimens submitted to pure water. 
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Fig. 6 — Glass transition temperature (Tg). 
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Fig. 7 — Stress versus strain relationships of specimens submitted to: (a) pure water; (b) water with chlorides; 
(c) wet and dry cycles in water with chlorides; (d) freeze-thaw cycles. 
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Fig. 8 — Tensile mechanical properties: (a) tensile strength; (b) E-modulus. 
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Fig. 9 — Example of determination of the Poisson’s ratio for the REF480 series. 
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