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Abstract

Numerical simulation of dynamic crack propagatianfunctionally graded glass-filled epoxy
(FG) beams using a regularized variational formoitais presented. The Griffith’'s theory based
hybrid phase field approach for diffusive fractusetaken, which is able to accurately simulate
complex behaviors of dynamic crack growth in FGM#$fie FG beams under impact loads
experimented by Kirugulige and Tippur (Exper. Me2B06; 46:269-281) are considered, taking
the same configurations, material property, cramtation, and other relevant assumptions. The
crack paths, crack length, crack velocity, energets., computed through the hybrid phase field
model are numerically analyzed, and some of thesalts are directly compared with the
experimental data. Due to lack of necessary inftionaregarding impact loading profiles and
boundary conditions in setting the tests, the saths become difficult as an inappropriate
definition of loading and boundary conditions cagnsicantly alter the outputs of numerical
solutions. This issue is important and thus isudsed. Two specific loading profiles, the constant
and the linear displacement velocities, are tak#o account, while free-free FG beams are
considered. We show that good agreements of craitis ppetween the experiment and phase field
approaches can be obtained. Numerical resultscalsfirm a significant effect of elastic gradients
on final crack paths. Similar to the experimentgdults, we also found that the crack path kinks

significantly when situated on the stiffer side gred to the compliant side of the FG specimen.

Keywords. B. Fracture; B. Impact behaviour; C. Computatianadelling; C. Damage mechanics;
phase field model; dynamic crack growth; functibhgkaded materials.
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1. Introduction

Advanced functionally graded materials (FGMs), whare known as a special composite
material emerged recently, have been widely usedchamy engineering applications including
aerospace, automotive, marine, civil engineering 38-38]. The FGMs are characterized by
spatially varying material properties with the ggdbr instance, of reducing stress concentrations,
relaxing residual stresses, or enhancing the bgnstiength of composite constituents [2]. Typical
applications of FGMs, as stated out in [3], include impact resistant structures for ballistics and
armors, thermal barrier coatings in high tempermttwmponents, interlayers in microelectronic
packages, and many others. The most distinctiveifies of FGMs over constituent materials are
that the compositions and volume fractions of tbhestituents in FGMs are varied gradually, thus
resulting in a non-uniform microstructure in theteral with continuously graded macro-properties
as illustrated in Fig. 1 [4]. The FGMs however aeey brittle, and the extent to which these FGMs
can be tailored against failure or damage becoma® nmportant. The knowledge of fracture
behaviors, especially the dynamic crack propagatidhGMs, which is being studied in this work,

is hence essential in order to evaluate their nitieg

v

1100 um

Fig. 1 Non-uniform microscopically inhomogeneous struetaf the NiCoCrAlY-YSZ composite
five layered functionally graded material [4].
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Numerical failure mechanism simulation of dynamraak propagation in FGMs remains a
significant challenge in computational mechanidse Tapability to investigate fracture behaviors
of FGMs under dynamic loading conditions is impottt their effective design and development.
While static analysis offers designers and engsegth an indication of critical state of the sges
contribution in a cracked body, real world struesjrhowever, are invariably loaded dynamically.
Most of previous works available in literature haledicated to the determination of static fracture
parameters and quasi-static crack growth simulafsa® [5-8]), whereas studies accounting for
dynamic crack propagation in FGMs are rather raigpur and his co-workers [3, 9, 10] presented
an interesting study of dynamic crack propagatiobending beams made of Soda-lime glass and
epoxy materials. They mainly conducted an expertaieprocedure using optical method of
Coherent Gradient Sensing and high-speed photograytile validated numerical results derived
utilizing cohesive element and standard finite elatrmethod (FEM) have also been added. Yang
et al. [11] investigated dynamic fracture of FGMwlar impact loading using the FEM, considering
the influence of non-homogeneity, loading ratiod amack velocity. Notice that the mass density
and Poisson’s ratio have been assumed to be const@hl]. Jain and Shukla [12] described a
detailed analytical and experimental investigatormynamic fracture of FGMs under mode | and
mixed-mode loading conditions. Zhang and Paulin8] [tleveloped a cohesive zone model
integrated into a graded element formulation faalidg with dynamic failure processes in FGMs.
They addressed an incorporation of a failure dateinto the cohesive zone model using both a
finite cohesive strength and work to fracture intenal description. In terms of cohesive method,
Kandual et al. [14] presented an explicit cohesigkime finite element for dynamic fracture and
wave propagation in FGMs. Very recently, Cheng let{¥5] introduced a peridynamic model,
which is based on non-local continuum mechanicefbation eliminating spatial derivatives, to
model dynamic fracture in FGMs. For curious readérgher information of dynamic fracture

studies in FGMs can be found in an excellent revieade by Shukla et al. [16].
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Apart from the limitations of experimental worksjsting numerical methods have also found
very difficult or cumbersome in accurate simulasiaf fracture in FGMs, especially dynamic crack
propagation. In the last decades, great efforte Ipax into the developments of effective, novel and
accurate approaches for numerical simulation ofadyio fracture problems and an enormous
achievement has been reached. The linear elaatiuife mechanics (LEFM) theory, which is based
on Griffith’'s theory for brittle fracture, has swssfully applied to solve a wide range of
engineering problems. The underlying idea behingl @riffith’s theory is to drive the crack
nucleation and propagation by a critical valueha €nergy release rate [17]. In general, there are
two major approaches that can be applied to theetimmdof brittle fracture, the discrete and the
smeared methods. Advances involved in terms ofdiberete methods can be named as the local
enriched partition-of-unity, see e.g., [18-21], edbed finite element method [22], cohesive crack
model [10, 13, 14], etc., In this discrete settitigg discontinuities like crack are introduced and
directly integrated in the displacement fields lwe framework of the Griffith’s theory and finite
element method (FEM). The smeared methods likeldssical continuum damage mechanics (see
e.g., [23]), or a regularized phase field fractomedel (see e.qg., [24-27]), alternatively, are based
the energy minimization concept. Their aim is toorporate alamage variableor to introduce a
fracture phase field parameténto the model to describe the deterioration otamals or to let
crack propagate along a path of least energy. Mpezifically, the phase field formulation, in
contrast to the discrete fracture approach, drikiesevolution of crack through the fracture phase
field parameter, which is obtained by introducindoaal history field containing a maximum
energetic crack source in terms of deformatioronystThis definition allows one to update the field
variables like the fracture phase field, displacet®end history in a certain time step. Different
versions of phase field models (i.e., physics aedhanics) have been classified clearly and can be
found in [26], an excellent review work publisheztently. Nevertheless, the crucial idea of the
phase field model is to indicate the cracks thaughpropagate along a path of least energy, as the

minimizer of a global energy function, by which hage parameter is introduced to track the
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cracked and uncracked regions of the body [24]. @apr advantage of this phase field approach
is that the fracture problem is reformulated asystesn of partial differential equations that
completely determine the evolution of cracks, hyghlitable for high gradients problems. There are
neither phenomenological rules nor conditions ndetedetermine crack nucleation, growth or
bifurcation. More importantly, the phase field misddo not require any numerical tracking of
discontinuities in the displacement fields. Consely, the difficulties of discrete approaches in
predictingcrack initiation andcrack velocitycan now be overcome by using phase field methods
[25, 26].

The phase field models have been applied to fadnd damage analysis of homogeneous and
non-homogeneous materials [26], while only a fewrksohave dedicated to dynamic crack
propagation in brittle and quasi-brittle materiadsy., see [28-32]. The phase field simulation of
dynamic crack propagation in FGMs made of Soda-lgt@ss and epoxy materials, however, has
not been available in literature yet when this papéeing reported.

The main objectives of this work are fourfold: (a) present and show an extension of the
recently developed hybrid phase field model [26] &a applicability to the simulation of dynamic
crack propagation in FGMs, exploring some major gitel phenomena of dynamic fracture
behaviors in FGMs, for instance, initial kink arglerack initiation trend, crack velocity; (b) to
rigorously and directly validate numerical crackhpeesults with respect to the experimental data;
(c) to numerically analyze the role and effectha track location, material gradation, impact loads
and boundary conditions on the crack path; andqdddress some numerical properties of the
phase field model in dynamic fracture of FGMs aistuass some other relevant issues through the
kinetic, fracture, and elastic energies.

It is worthy stressing out here that accurate sitmhs of dynamic crack propagation utilizing
preceding numerical approaches is often difficall ahallenging in some extent. It may be due to,
for instance, the inherent non-homogeneous behaamt the lack of symmetry in material

properties of FGMs. Further discussion on thisessan be found, for instance, in [13-15].
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In this work, we are particularly interested in slation of edge-notch bending glass-filled
epoxy beams under offset impact loading as scheallgtidepicted in Fig. 2, which were
experimentally investigated by Kirugulige and Tipd8]. The same geometry is taken for two
configurations shown in Fig. 2, one FGM beam wittrack located on the stiffer side and the other
with a crack located on the compliant side are migakly simulated. Similarly, we also take into
account the homogeneous beam to further exploredifierence in fracture behavior under
dynamic loading due to functional grading. The hgemeous beam has all the features as the two
FGMs beams except its material property. The cpatks, crack length, different types of loading,
crack velocity, fracture energy, kinetic energygstic energy, etc., computed by the hybrid phase

field model will be considered, investigated antidsied against the experimental data in [3].

43 mm

Pre-crack

\—l _I_a=8.6 mm

I L=152 mm |

W

43 mm

W

Fig. 2 Schematic of two configurations of FG beams and teometry parameteréa) FG beam with a
crack located on the stiffer side; and (b) FG beathn a crack located on the compliant si@ir definition
of the stiffer side and compliant one is exactly same as that in [3].
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In what follows, we briefly describe, in SectiontBge materials to be used for the simulation
and solution procedure in the context of the hylplthse field formulation, in which some
important issues in regard of the implementatiothef phase field approach will be presented. To
accurately reproduce the experimental tests throwgherical methods, an appropriate definition of
loading and boundary conditions in the modelingfien required. An inappropriate definition of
the loading or the boundary condition, of coursduces unacceptable outputs. In other words, the
success of simulations totally depends on the afen¢ioned issues. To this end, this issue is
discussed in Section 3. Subsequently, the numeassalts and discussion will be given in Sections

4 and 5. Some conclusions drawn from the studgamemarized in the last section.

2. Materialsand solution method

We start by considering a mixed-mode experimemsi 6f FGMs conducted by Kirugulige
and Tippur [3]. The FGM beams are made of epoxi wiintinuously varying volume fraction of
glass-filler particles, the Soda-lime glass, (38 mean diameter) from 0% to 40%. The material
properties of FGMs are fitted from the experimelata [3], which are then shown in Figs. 3a, 3b
and 3c where the density, elastic modulus anduraatnergy continuously vary from the bottom
side to the top of the FGM beams. Here, the dotggesent the real data reproduced from
Kirugulige and Tippur [3], whereas the solid lirepresent the fitting curves, which will be used in
our simulation throughout the study. Notice thaé tborresponding Poisson’s ratio variation
between 0.33 and 0.37 mentioned in [3] was not &epeto play a significant role in fracture
behavior of FGMs. It is therefore set to be a camis0.34 throughout this analysis. In addition, the
variation of mode | crack initiation toughness wesr&oung’s modulus shown in Fig. 3c given by

[3] is also taken for the simulations.
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Fig. 3 Material properties of FGM beams. Variation of temsity (a), the elastic modulus (b) and the
fracture energy (c).

Regarding the solution method, we adopt the regal®Veloped hybrid (isotropic-anisotropic)
phase field model, which is proposed in [26] foittlar fracture, for our simulation purpose. The
knowledge of standard momentum balance and theigmolequation of such hybrid fracture phase
field formulation have already been detailed in][2&e thus do not intend to repeat them here in

this paper, for the sake of brevity. Instead, dhky main idea of the hybrid phase field approach
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with its evolution equation is briefly given, addstng some relevant important issues and versatile
features of the method.

In terms of phase field fracture modeling [24-3BE cracks, which can be regarded as internal
discontinuities with respect to the macroscopitdfi@are essentially represented by a phase field
variable s bounded between 0 and 1. The phase field varigbigries continuously from 1 for
undamaged materials to for completelydamaged materials. The hybrid (isotropic-anisottppi

phase field model for brittle fracture is finallgrmulated as follows [26]:

o(u,s)=s" %(8)
o€

1)
PAs+(1-5)= 2L
G

c

where 6, ¢ are the stress and strain tensors, respectiwelys the displacement field obeying
the standard elastodynamic equation without dameffert pii = divo, in which p is the mass
density, div is the divergence operator, and the superposed reptesents the partial
differentiation with respect to time. In Eq. (1)stands for the length scale parameter introduced t
account for the width of the crack. Further defomtof the functional length scale parameter refers

to, for instance, [25], and in this study0.5 mm is selected. This length scale parametgefined

to control the gradient of the transition zone frdamaged s=0 to undamaged s=1 materi@s.

denotes the material fracture toughness indeperadeghe crack speedAs is the Laplacian of the
phase field parameter, whilél ™ introduces a strain history field of maximum pstreference

energy, ¢, (s) obtaining in a loading process, in order to harttie irreversibility of the crack

phase field evolution [25]

H(x,t):= MaXeyoy Yo (e(x,7)) (2)

10
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By only applying the phase field parameter to thwesile part of the elastic energy density

function, ¢, (a) , we thus prohibit crack propagation under compoesyielding

Vi) = %Mtr ()2 +1r (e2) ®

with the elastic constan# >0, (tr(g)) =%(tr (e) +Ir (g))), and 7 >0 is the viscosity parameter.

"

The evolution equation of the crack phase fielfinally given by [25]
. + Gc 2
s = 2sH +7((s—1)—l As) 4)

where the superposed daf, represents the partial differentiation of the gghéield parameter with
respect to time. In this study, the viscous ternneglected. In other words, by simply setting
n =0, the rate-independent evolution of the phase fi@ichmeter can be obtained [25, 26].

It is worth noting that, according to [26], thene awo formulations of phase field approaches
that can be treated as “basic” ones:ifieropicand theanisotropicformulations. The hybrid phase
field model taken, however, contains advanced featof such two individuals. The underlying
idea of the hybrid phase field model is to retaitinear momentum balance equation within a
staggered scheme (i.e., a linear stress-straina@lasaving the computational time, while welstil

want the evolution of the phase field parameserto be driven merely by the tensile elastic energy

density, ¢ (a) , Which is to avoid the cracking in the compressechain [26].

Now, the evolution of crack is governed by the lipkey between momentum balance and the
evolution of the phase field. The kinetics of crawktion is restricted to fairly simple possibilgie
and the dynamics of fracture is based only onnberaction with momentum balance. In our work,
a staggered iterative scheme is adopted to solgergbulting uncoupled equations [26]. The
accuracy of this scheme in dynamic crack propagatib FGMs will be validated against the
experimental data [3]. We then solve the resuléggations of motion in an effective way by using

an in-house adaptive finite element method usingo&e quadratic triangular elements in

11
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conjunction with a staggered iterative scheme. His tstudy, we used the anisotropic mesh
refinement technique [43-44], in which a metriemployed to define the mesh size in each spatial
direction. Generally, the interpolation error estimis used in order to assess the metric. In this
calculation, the metric is obtained from the intédgtion error estimate of the phase-field parameter
which keeps a mesh to be fine enough in the daraisge Curious readers can refer to, for instance,
Refs. [43-45] for more information.

Remark #11It would be stressed out here that a small regégpmesents a crack in terms of the
phase field fracture approach in which the damamgeiraulates. This representation of the phase
field in general is conceptually similar to the a@maploys within the context of continuum gradient
damage theory, e.g., see [33]. Therefore, the phelsemethod could be viewed as a continuum

gradient damage theory, but with a different wagénivation of the damage evolution equation.

3. Impact loading profilesand boundary conditions

We conduct two models of mixed-mode fracture expents: (a) a pre-crack placed on the
stiffer side of the beam with impact occurring éie tompliant side, and (b) a pre-crack placed on
the compliant side of the beam with impacting oa stiffer one. One of the underlying problems
behind the simulations using the hybrid phase fadgroach is how to appropriately represent the
impact loading and boundary conditions in the nuca¢implementation. This issue, as mentioned
above, is important, and thus is discussed immelgliat

As depicted in Fig. 2, the FGM specimens are regtam beams that are initially set up with a
pre-crack of 8.6 mm at the center of bottom sidsudden loading on the top beam is applied by an
impactor with a velocity of 5 m/s. In the refererj8g the description of impactor, unfortunately, i
not adequately detailed to allow us to preciselgspribe an impact loading condition. The
information of the rebound time and of the sizetttd hammer utilized as the impactor in the

experiments is missed in [3]. Therefore, the implaetding profiles picked in this study are

12
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assumed to be close to those used in the expesmanimuch as possible. As a consequence, the
impact loading condition is hence modeled as alaigpnent velocity with two different profiles,
which are schematically depicted in Fig. 4a for eatiside step loading (termed asconstant
displacement velocifyand Fig. 4b for a Heaviside step loading withnatd rise time (termed as

linear displacement velocityfor simplicity throughout the study.

u(t) =5: Heaviside step loading

5t /ty,t <to,t, = 30Qus N T ©)
u(t) = : Heaviside step loading with a finite rise time
5tt,

Here, the constant displacement velocity impliest tihe top surface of FGM beam has the
same mechanical impedance with the impactor. Felittear displacement velocity case, the top
surface of FGM beam has, however, larger mechamygaédance than that of the impactor, and it
takes a certain time in order to reach the setwgact velocity of 5 m/s. The effect of these impact
conditions will be examined in the numerical result

Regarding the boundary conditions, we follow thegioal description applied to the
experimental and FEM numerical simulation worksKigugulige and Tippur [3, 10]. As pointed
out in the reference works [3, 10] that while coctthg experiments, the FGM beams are setup so
that the specimens are initially rested on two kdoaf soft putty, before imposing the impact load.
They also addressed one important point that thie marpose of their set-up is to preclude or
avoid any interaction from the support reactionsiclw may significantly alter the resulting
dynamic fracture propagation behaviors. To this, encdur phase field simulation, the boundary
conditions of the FGM beams are finally assumeletéree-free.

It is noticed that the free-free boundary condsi@s shown in Fig. 2 use impact loading of the

free beam since this was also taken the same inf¢t@ FEM-based computational study. In the

13
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present work, thdisplacement as a uniform distribution of the equivalent bodyce over a length

of Imm is applied on the top surface of specimen.

/
@ 5.0 @ 5.0 .
E E |
> z :
8 8 l
g $ i

3 5 > 3 5 L >

0 Time (us) 0 300 Time (ps)
(a) A constant displacement velocity (b) A linear displacement velocity

Fig. 4 Schematic of two impact loading profiles: (a) Axstant displacement velocity (or a Heaviside step
loading) and (b) a linear displacement velocitygddieaviside step loading with a finite rise time)

4. Numerical resultsof dynamic crack propagation
The first focus of our study is to show the capgbibf the hybrid phase field model in

simulation of dynamic crack propagation in FGMs.réléh edge-notch bending beams (two
functionally graded glass-filled epoxy beams ane& twwmogeneous beam) shown in Fig. 2 are
considered. Note that the homogeneous beam (nat Be) has exactly the same configuration to
the two FG beams. The numerical computations arforpeed employing an in-house adaptive
finite element approach with remeshing, integratingtaggered iterative scheme. All simulations
using 6-node quadratic triangular elements for hfplacements and phase field parameter are
carried out with the material properties of FGMetsked in Fig. 3. In Fig. 2, the specimens are
subjected to an impact loading at an offset digtanith respect to the initial crack location. A
velocity of 5 m/s as explained above is thus spetifo a small region composed of nodes at the

impact location. All the simulations are performeader the plane stress state. The crack paths,
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crack velocity, crack length, energies, etc., daked by using the hybrid phase field model are
investigated and compared with the experimental [&jt

Prior to analyzing the numerical results gainedthwy hybrid phase field formulation, it is
necessary to address one important feature obsé&w@dthe experimental works [3, 10]. To this
end, Fig. 5 shows the final crack paths made bexperiment [3], provided that, as pointed out by
Kirugulige and Tippur [3]:“the differences in the crack paths are attributahbdirectly to the
combined effects of the elastic gradients as weliracture toughness gradientsih other words,
the final crack paths differ greatly for the two FMGbeams. Another interesting point is that an
initial kink angle of approximately 4is found for the case under which the crack lccate the
compliant side, while it is found for approximatdlg’ for the beam with the crack located on the
stiffer side. Additionally, an initial kink anglef @bout 16 for the homogeneous beam is obtained,
which is bounded by the ones for the two FGM bedmsvhat follows, we will verify these final
crack paths through the hybrid phase field apprpoand present and discuss some other relevant

results.

(a) An FGM beam with a crack located on the stiffidle

15
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(b) An FGM beam with a crack located on the conmplsde

(c) A homogeneous beam

Fig. 5 Schematic of final crack paths (black solid lines)jwo FGM beams (a), (b) and one homogeneous
beam (c) made by the experiments [3]. A vertiaa fmarked in blue color) is located 10 mm awaynfro
the crack tip, which just helps to establish thaesc

4.1 Functionally graded beam with a crack locatedtloe stiffer side

The first case is exactly concerned with the cquesling specimen shown in Fig. 2a, in which
a pre-crack is fabricated to be placed on theestgide. It implies that the value of elastic magul
of the bottom side is larger than that of the tog.oThe hybrid phase field model is applied to
calculate the dynamic crack growth of the specifi€iM specimen. The computed result of the
final crack path is then depicted in Fig. 6a shantime evolution graph of the phase field parameter.
The constant displacement velocity sketched in 4ags used for this analysis. In Fig. 6a, the phas
field parameter varies continuously from 0 (redisag damaged) to 1 (blue region: intact).
Interestingly, in such figure a diffusive zone arduthe crack paths can also be seen, exactly
reflecting the perspective of the phase field miodelThe final crack path computed by the hybrid
phase field formulation matches well the experimkgtack path data as seen in Fig. 6b. This
excellent agreement in both solutions can be okseior the whole curves, i.e., from the initiation
crack where the initial kink angles can be foundéoidentical. There is, however, a slight and
insignificant difference at the very late stagetlod final crack paths between two solutions. The
discrepancy of crack paths at the very late stddbeofinal crack paths between experimental and

computed results is attributed, for instance, ® &dssumed free-free boundary conditions at the

16



10

11

12

13

14

bottom of the model. Apart from the boundary candit other reasons such as the stress wave, the
finite size effect, etc., may also induce suchighsldifference at the late stage of the final krac
paths. Although the bottom face of the FGM specinseexperimentally assumed to be rested on
two blocks of soft putty, in simulations, howevitre assumption of free-free boundary condition to
the bottom face of the beams may not completelgdbe to represent such two blocks of soft putty,
and the effect of the reaction force induced bystingport putty may lead to a certain level of exror
of the final simulation results. In this case, bBswn, the less accuracy can be found at the véey la

stage of the crack paths.

40+ o) (o] EXp 1
Num

Width of beam [mm]
= [ N N w
o a1 o [6)] o

a1

o

0 0.5 1.0 70 75 80 85
Partial length of beam [mm]

(@)
(b)

Fig. 6 Comparison of the final crack paths (a) and (lgroFGM beam with a crack located on the stiffde si
obtained by the experiments [3] and the hybrid ptieedd formulation, taking theonstantdisplacement velocity.

Fig. 7 shows the same numerical comparison betw®en approaches but the linear
displacement velocity is taken into phase field lenpentation instead. In this particular case, the
results indicate that by using the loading drivierotigh the linear displacement velocity, the kink
crack angle can be predicted well. A remarkablee@gent of the crack paths between two

solutions can also be obtained (crack paths growoupalf of the width of the specimen), but the
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linear displacement velocity is not able to predietl for the full crack path, large error can be

found at the late stage, see Fig. 7.

Fig. 7 Comparison of the final crack paths of an FGM beéth a crack located on the stiffer side obtained
by the experiments [3] and the hybrid phase fieltnulation, taking thénear displacement velocity.

Next, the boundary conditions setting in dynamickr propagation is important, which may
affect the output numerical results of the simolatiThe key point as already stressed out above is
due to the fact that while the beams have beenumted experimentally supported on two blocks
of soft putty, precluding the support reactionseetiihg the fracture behavior, in simulations
however they are assumed to be free-free condiBori0]. We numerically show here that the
free-free assumption could be applied to the sitrara, but in fact that is not able to fully caur
the real support conditions by the two soft puttgcks taken in the tests. Fig. 8 shows the
deformation results of the FG beam at two diffetene steps calculated by the phase field model.
We highlight one important point that can be obsdrirom these deformation results that the effect
of the support reaction on fracture behaviors i small. In order words, the support reaction
induced by the two blocks, in principle, can notnleglected. Specifically, the effect is significant
the late stage of the impact loading. At the eat@ge of loading, e.g.t = 200us, the beam shown
in Fig. 8a is being deformed. Here, attention ningsfocused on the bottom side of the beam at the

two supports where the deformation is still smiallt it becomes larger at the late stage of impact
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loading, see Fig. 8b, e.gt,=320us, where the beam deforms unsymmetrically. It mehas the
support reaction realistically alters the fractbehavior, the crack paths. Therefore, the free-free
beam assumption itself is possible for simulatibot not fully capture the real works of the
experiments, a certain level of error can be redchiderefore, it can be concluded that the less
accuracy on the final crack paths at the late sshgevn in Figs. 6¢ and 7b may be caused by this

free-free boundary condition.

Fig. 8 Deformation of FG beams with a crack placed orstifter side at two different time steps, takihg t
constantisplacement velocity. (red color represents theesp field, blue color represent the crack path)

Fig. 9 represents the evolution of crack length enagtk velocity versus crack propagation time.
Note that the crack propagation time defined immmasure the time when crack starts propagating.

It is, on the other hand, to allow us to make asjiids comparison between the simulation and the

19



test. In Fig. 9a, the solid line indicates the akton result whilst the dots represent the
experimental data reproduced from Kirugulige anpptr [3]. It is apparent that a good agreement
of the crack length versus crack propagation tireevben two solutions is obtained. The crack
velocity with respect to crack propagation timeadted by the hybrid phase field model is also
estimated and compared with that reproduced froenetkperimental data [3], see Fig. 9b. The

amplitude of the crack velocity gained by two swns is comparable (see dash-dot line).
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Fig. 9 FG beam with a crack located on stiffer side: Cladigth versus crack propagation time (a) and
crack velocity versus crack propagation time.
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In terms of dynamic fracture analysis, the dynalmacling defined through the impact velocity
plays a crucial role and may have effects on tlaetire behaviors. To this end, two specified
constant velocities of 3.5 m/s and 5 m/s are taked their calculated results of crack paths
accounted for the stiffer cracked specimen are shiawrig. 10. The crack paths computed for two
cases are completely different. Different impadbegies greatly alter the final crack paths. The
higher velocity is imposed the larger the initiaikangle is gained. It is clear that the one suite
higher velocity grows faster than that of lowerogy. The resulting crack path of the higher

velocity is longer that of the lower one.

v=3.5m/s
v=5 m/s

Width of beam [mm]
= = N N w
o (63} o ()] o

(@)

70 75 80 85
Partial length of beam [mm]

Fig. 10 Effect of different impact velocities on the cragmkths and initial kink angles of stiffer cracked
beams.

4.2 Functionally graded beam with a crack locatedtioe compliant side

Next, we consider an FG beam with a pre-crack &atan the compliant side (see Fig. 2b), in
contrast to the previous stiffer beam. A pre-crémtated on the compliant side means to serve

lower elastic modulus. The hybrid phase field mddkén is applied and the dynamic crack growth
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of the FG specimen is then computed. Here, we articplarly interested in estimating the crack
path, showing the evolution graph of the phaselfgdrameter. Fig. 11, as a consequence, depicts
the resulting final crack paths calculated by thage field model plotted altogether with the tests
[3] for both the constant and linear displacemesibeities. Overall, the calculation result with the
linear displacement velocity shows a better agre¢émeth experimental data than one with the
constant displacement velocity. It can be seen evere in the crack path behavior that the model
handling the constant displacement velocity isaié to produce the initial kink angle of the crack
path. The crack path in this case immediately lades instead, and less accuracy compared with
the experimental data is found. In the contrarg, itiitial kink angle can be captured well by the
model taking the linear displacement velocity. Tiéal kink angle in this way matches well the
experimental curve. However, the accuracy is foanthe early stage only, large errors appear at
the late stage of loading.

It is important to note here that both proposediilog profiles have been attempted but the
final crack paths are unable to be reproduced atelyras compared with the experimental data.
The main issue as already discussed above ishtbatecessary information of the loading profiles
used for the real tests is missing in the referevmd [3].

The constant and linear displacement velocitieedeémupon the model to be considered. In our
numerical experiments, we find out that the modéhva crack located on the stiffer side the
constant displacement velocity offers better aaouiat the crack paths than that using the linear
velocity support the hypothesis that top surfacé@M beam has the same mechanical impedance
with the impactor. It is opposite when dealing witle beam with a crack located on the compliant
side. In this case, the top surface of FGM beamldrge density and elastic modulus than case of
crack located on the stiffer side. It means that,tbp surface of FGM beam has larger mechanical
impedance than that of the impactor, and it takesrtain time in order to reach the set-up impact
velocity of 5 m/s. In other words, the loading fled are problem-dependent. It is reasonable since

the loading profiles are a key factor in dynamacture analysis that controls the output of thalfin
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solutions of problems. Therefore, the two loadingfifes are attempted, in order to not only seek a
reasonable result of the crack path, but also eb&xthe importance of loading conditions within

the framework of dynamic fracture simulations.

0 0.5 1.0

(a) Calculation result with the constant displaeahvelocity

0 0.5 1.0

(b) Calculation result with the linear displacemesiocity

Fig. 11 Comparison of final crack paths of an FG beam waifire-crack located on the compliant side
between the phase field method and experimental dat

4.3 A homogenous beam
In order to show the difference in fracture behawdoe to functional grading of materials, a

homogeneous beam is solved using the hybrid phesemodel. The physical properties are: the
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densityp = 1175 kg/m, elastic modulu& = 3.2 GPa and K = 1.26 MPa.m{2 The computed crack
paths using the displacement velocity profiles ig. B are plotted in Fig. 12. Compared with the
experimental data, the obtained result of crackhgaitith the constant displacement velocity shows
better agreement than that employing the lineglatement velocity. Once again, less accuracy of
the crack path at the late stage is found in toredgeneous case. The less accuracy may be caused

by the boundary conditions. Nevertheless, bothitapgrofiles can offer good initial kink angles.

0 0.5 1.0

(a) Constant velocity (b) linear velocity

Fig. 12 Comparison of the final crack paths of a homogesdmam between the numerical phase field
model and experimental data: (a) constant andigpjattement velocities.

5. Discussions

Three specimens of FG and homogeneous beams expéeinby Kirugulige and Tippur [3]
are numerically simulated by the hybrid phase fraloldel. Obtained results apparently indicate the
importance of impact loading profiles in simulatiohdynamic fracture problems, which drive the
crack paths. The two impact loading profiles pr@uhswithout information from the tests, can be
used for our phase field simulation, but the etagtadient of materials greatly affect the finaak
paths. Therefore, an appropriate choice of the anleading profile should be considered for each
model, in order to deliver a comparable result whih tests. Of course, the simulation will be more

convenient and more feasible on the condition tieiled information in regard of the applied
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loading profiles used for the tests is sufficienghpvided. In that case, the numerical outputsaoul
better fit the experimental data.

The boundary conditions are also found to be acalifactor altering the crack paths of the
system. Obviously, the obtained numerical resukkilgt an important role of the boundary
conditions in dynamic fracture simulation. Theyigale that the free-free boundary conditions are
not able to fully capture the real boundary coodi$i of the two blocks of soft putty. The free-free
boundary conditions could provide acceptable redulit less accuracy of the crack paths at some
parts takes place. Among three cases, boundarytmsdof the two blocks of soft putty have less
effect on the stiffer case due to the high elastodulus and density of the bottom. Compared with
the compliant case, the homogenous case has aesmabks density, as the result, the effect of
boundary conditions of the two blocks of soft pudtycrack path was smaller.

The initial kink angles are well predicted in massses. Similar to the finding by the test, the
crack kinked less when situated on the compliade sompared to the stiffer side of the FG beams
that has been found numerically. However, the fanatk paths derived from the phase field model
can be predicted, but depend upon the impact Iggutiofiles selected. The crack paths are found to
be sensitive to the elastic functional gradientaterials.

In the contrary to quasi-static loading conditidghe crack paths under dynamic loading
seriously suffers the elastic wave stress exciéind altering the crack tip during the evolution of
the crack. From the experimental and numericalltgsit is believed that the scattered transient
wave induced by impact loading has toughed thekcsaweral times before exciting the crack to
grow. As a result, the entire initiation and progégn is subjected to transient stress wave
evolutions in the body. This complex oscillationtloé stress waves cause difficultly in interpreting
the evolution of crack paths under impact loading.

Since the original concept of the phase field frectmodel is based on the energy based

Griffith criterion of fracture mechanics, variousezgy components present in the body can hence

25



1

2

10

11

12

13

14

15

16

17

18

be explored. Here, the kinetic enefgy the internal elastic bulk ener@g and the fracture energy

Ec are considered, which are subsequently definddllasvs [34].

1o (©)
E = pru dx: kinetic energy
Q

E, =[5y, (s)dx: elastic bulk energy
Q

2
E,.= f—’f MH‘VS‘Z dx: fracture energy
Q

/

By this way, it is possible to observe the conwmrf elastic energy into kinetic and fracture
energies and vice versa. Notice that the fractnergy associated with cracks is approximated by
the phase field. The evolution of all the energiesputed is thus depicted in Fig. 13. It is cléwat t
the fracture energy is small compared with the tiecn@nd elastic energies. The elastic and kinetic
energies in all cases immediately increase as asdime point of crack initiation is reached, the
fracture energy grows. The elastic bulk energylmatd up in the body of specimen that is released
in the fracture and kinetic energies during theppgation of the crack. As a result, the fracture
energy continues to increase, whilst the elastergnis decreased after the crack propagating. The
kinetic energy is almost constant in such a waye Tbotal energy of the system after full
fragmentation of the specimen is hence approximabebe constant.

It is numerically found that the peak values of kiveetic and elastic energies of the stiffer case
are almost higher than those of the compliant amtidgeneous ones due to its stronger impact
loading profile (Fig. 4(a)). The smaller energiddl®e homogeneous beam may be due to the fact
that the homogeneous beam has a smaller massydeosipared with that of the two FG beams.
However, the impact loading profiles and the etagtadient materials may have some influences

on the fracture and kinetic energies of the body.
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In terms of evolution of fracture energy, the cracikiation can be observed. It is difficult to
point out exactly the time of crack initiation, hever we can see that the crack initiation time
increases in order of the stiffer, compliant andnbgeneous cases. This observation is in
consistence with experimental evidence [3]. It @t noting that the simulation to reproduce this
behavior is failed as in [10]. Regarding two FG rbeaonfigurations, although the fracture
toughness at the crack tip of the stiffer is lartfemn that of the compliant (see Fig. 14), the krac
initiation time in the stiffer case is shorter thhat of the compliant case. The main reason may be
attributed to the stronger loading profile applieal the stiffer case. In the compliant and
homogeneous cases, the crack initiation time iadao be shorter in that of the compliant one due

to its higher mass density and the lower energytdra toughness (see Fig. 14).
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Fig. 13 Comparison of evolution of various energies inudation of dynamic crack propagation for both FG
beams and homogenous one: (a) Kinetic energy grelgstic bulk and fracture energies.
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Fig. 14 Fracture toughness at the crack tip for threescatidfer, compliant and homogeneous.

6. Conclusions and outlook

Numerical solutions of dynamic crack propagatiof-®BMs with different configurations have

been investigated. We adopt an effective hybricspHeeld model, which is particularly suitable for
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dynamic crack propagation. Works conducted paditylfocus on the final crack paths, crack
initiation, crack length, crack velocity, energietc., which are validated with respect to the
experimental data. Substantially, it confirms theod) performance and accuracy of the hybrid
phase field approach in dynamic fracture modelih§®MSs. It is believed that the loading profiles
play an important role in terms of dynamic fractpegspective. Also, the boundary conditions may
affect the output results. The numerical schemagdan the phase field model can capture well
the initial kink angles and the crack initiatioerd regardless of materials. The initial kink arigle
independent of the boundary conditions, but depend$e elastic, fracture toughness gradient and
loading profiles. The hybrid phase field model take possible to predict well the crack paths,
provided that appropriate impact loading profileasinbe carefully selected. More conveniently,
practices are expected to provide detailed infoionatf loading profiles accurately, which may
support well the simulations.

Nevertheless, simulation of dynamic crack propagetor other advanced composite materials
and structures (e.g., FGM AI-SiC metal matrix cosimwith random particle [39], or cross-ply
laminates in 3D [40]) with the aid of the hybrid gse field model is potential. In particular,
considering the hygrothermal effects on the dynaocumpressive properties of graphite/epoxy
composite materials [41] or studying the vibratwnFGM conical shells with mixed boundary

conditions [42] using the proposed hybrid phaskl g@proach would be very interesting.
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