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Abstract

The effects of the addition of graphene oxide (@&@S)a filler for an epoxy

matrix have been studied in terms of the surfacerggnand mechanical interfacial

properties of GO/epoxy nanocomposites. The GO searfaoperties were determined

using X-ray photoelectron spectroscopy and Fourgrsform infrared spectroscopy,

and . The contact angle was measured by the sessjpemethod for the evaluation of

surface free energy. The investigated mechanicapgrties of the nanocomposites

included the impact strength, fracture toughness faacture energy. For the GO-

reinforced epoxy resin matrix system, a directdmeslationship was observed between

the specific polar components of the surface enanglythe mechanical behavior. These

results indicate that the mechanical interfacialopgrties of the GO/epoxy

nanocomposites were controlled by the specific paamponent including the

electron—acceptor and electron—donor parameters.

Keywords: A. Resins; B. Fracture toughness; B. Surface properties.
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1. Introduction

An increasing number of materials are currentlingpgoroduced using filler-

reinforced composites [1]. Epoxy-based materiakls @xtensively used in polymer

engineering, e.g., in cryogenic fuel tanks, coatggnts for space shuttles, structural

adhesives, microelectronics and matrix materials dtyuctural composites. These

materials possess many useful properties such lasvedy good thermal stability

combined with excellent stiffness, strength ande#&at adhesion [2, 3]. However, the

cured epoxy of the tight three-dimensional netwstrkictures is prone to fracture and

exhibits a high cross-link density because of ftserent brittleness and poor crack

resistance. Accordingly, numerous attempts have besde to improve the brittleness

of these resins by adding various nanosized fjllstsch as silica, carbon-based

materials, clay, and inorganic particles to epoxtrines. In addition, their combination

has been used to enhance the fracture toughnéfsgsst, and strength and even endow

these materials with multifunctional properties§fi—

Currently, carbon-based materials have been rdssdrcon their

physicochemical, thermal stability, electrical andchanical properties. Various carbon
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materials have emerged as potential fillers forypar composites. The addition of
carbon-based fillers, such as carbon black, carrotubes, carbon fiber, expanded
graphite and graphene have resulted in benefitciamical and physical properties
when employed in various applications. In sevetatliss, carbon fillers have been
successfully dispersed into epoxy resins, improving fracture toughness and heat
resistance and reducing the coefficient of thermxplansion [9-12].

Among these materials, graphene oxide (GO) has ntlgcereceived
considerable attention. GO consists of a singlen&tdayer of sp® carbon atoms.
Commonly, graphite is oxidized to GO and is thermaltally or thermally reduced to
produce functionalized graphite. GO is a promisic@ndidate filler for use in
composites because of its high surface area, \ameaction sites, low density, high
thermal resistance, and good conductivity. In aoldjtduring the oxidation of graphite,
various oxygen-containing functional groups suctepsxides, hydroxyls, ketones and
guinones are incorporated into the layers. Theemass of functional groups improves
the compatibility of graphite with various matrielgmers and promotes the dispersion
of graphite in epoxy, organic solvents and watédyng excellent mechanical and
thermal properties. Therefore, GO is a considerafilgient filler. GO has been used as

a nanosized filler in a wide range of polymer nwasi including polyetherimide,
4
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polyurethane, and polypropylene. GO has also beesstigated as a reinforcement in

polymer composites [13-17].

The wettability of a solid surface describes thditgibof a liquid to maintain

contact with the surface, which is significant imetadherence or bonding of two

materials. Additionally, the surface energeticsalid surfaces are critical in composite

systems, as they can determine the strength obdhd surface interaction with its

environment. Wettability, which depends on bothgtaess and chemical heterogeneity,

is an important characteristic. A prerequisite gmod adhesion between a filler and

polymer is that the surface energy of the fillerstnbe greater than or equal to that of

the polymer. Pristine carbon exhibits a small stefanergy and is unable to form strong

adhesive bonds with polymers. However, varioustional groups provide the GO film

with high surface free energy, improving its wettigh The functional groups and

energetic properties of GO can lead to completdéfgrént mechanical properties of the

resulting composites. However, a systematic stddpe effects of the addition of GO

on both the surface energetics of GO and the mémdlamterfacial properties of

GOl/polymer composites has yet to be comprehensuadgrtaken [18—-23].

In this work, GO was used as a carbon filler to rowe the mechanical

interfacial properties of epoxy composites, anddbeelation between the surface free
5
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energy and toughness behaviors of the resultinga@anposites was investigated.

2. Experimental

2.1. Materials

Natural graphite particles with an average diamet&s00 um were purchased
from Sigma—Aldrich Co., Korea. The diglycidyl etheir bisphenol-A (DGEBA) type
epoxy (YD-128) with an epoxide equivalent weightl85—-190 g-ed and a density of
approximately 1.16 g-cmat 25°C was supplied by Kukdo Chemical Co., Korea. The
hardener used was 4,4'-diaminodiphenylmethane (DBM)plied by TCI Co., Japan.
Phosphoric acid (60%) and sulfuric acid (98 %) wsaupplied by Daejung Chemicals,

Co., Korea.

2.2. Synthesis of GO

GO was prepared using Hummers’ method with someifioations [24, 25].
Flake graphite was added to a 1:9 mixture of comated phosphoric acid/sulfuric acid

with stirring; the mixture was then cooled underiea bath, and the temperature was
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maintained below 20 °C. Subsequently, KMn@as added with stirring, and the

reaction was allowed to proceed at 45 for 24 h. In the next step, the mixture was

cooled down to ambient temperature and poured ioet¢~ 400 mL); 30% hydrogen

peroxide was slowly added to the mixture, which waaintained at the same

temperature. Subsequently, the solution was filtered washed repeatedly with 10%

hydrogen chloride, ethanol, and distilled wateriluatneutral pH was reached. The

mixture was then dispersed in distilled water usifigasonication, and the GO powder

was prepared by freeze drying. Finally, the GO pawdas vacuum dried for 6 h at

room temperature.

2.3. Fabrication of epoxy composites with GO

Epoxy composites containing GO were prepared usiadollowing procedure.

GO was first dispersed in acetone by sonicaticanatient temperature for 30 min. The

solution was then mixed with the epoxy by sonigatior 30 min. Then, the mixture

was degassed at 80 °C in a vacuum oven for 6 Brtmve the solvent. Subsequently,

the addition of the curing agent with DDM was peried using mechanical mixing for
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30 min. The bubble-free mixture was then poured mtpreheated mold. Finally, the

curing steps were performed in a convection ovel88fC for 1 h, 15C¢°C for 2 h, and

170°C for 1 h. Composites containing different weightios (0.25, 0.5, 1.0, 1.5, and

2.0 wt%) of as-received GO were prepared. The patipa route for the GO/epoxy

nanocomposites is illustrated in Fig. 1.

2.4. Characterization and measurements

The structural properties were examined using X-d#fraction (XRD, D2

PHASER, Bruker Co.). Infrared spectra were obtaingidg Fourier-transform infrared

spectroscopy (FT-IR, PS-4000, Jasco Co.). The seipeoperties of the specimens were

determined using X-ray photoelectron spectrosco{3S, K-Alpha, Thermo Scientific

Co.). The thermal properties were analyzed usitigeamogravimetric analyzer (TGA,

Model TG209F3, Netzsch Co.). The morphologies aixtastructures of the prepared

composites were examined using field-emission massion electron microscopy (FE-

TEM, JEM-2100F, JEOL Co., Ltd.), atomic force mmcopy (AFM, Nanoscope

Multimode IVa, Bruker Co.), and high-resolution snang electron microscopy (HR-



135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

SEM, Model SU-8010, Hitachi Co., Ltd.).

The contact angle was measured using the sesspentethod on a Rame—Hart
goniometer (Phoenix 300 Plus, SEO Co.). A wettingitl (5 uL) was used for each
evaluation at 25 £+ 1 °C, and more than 10 dropsewested for each prepared
composite. Contact angle measurements were perfomitbin 5 s of contact for the
critical surface tension. In this work, three diffiet wetting liquids were selected:
distilled water, diiodomethane, and ethylene glyddle interfacial (or surface) tension,
London dispersion force, and specific (or polar)mponents were analyzed to
determine their components, including the acid lbase parameters of the surface free
energy. The basic characteristics of the surfage &nergy of the liquids are listed in
Table 1 and were used to evaluate the surfacesfremgies of the casting surfaces [26].

The data were averaged for 10 specimens.

Izod impact tests were performed on notched spewmsing an impact testing
machine (BESTIPT-320I, Ssaul Bestech Co.) accorthr§STM D-256. The specimen
size was 5 x 12.7 x 63.5 mnThe critical stress intensity factd¢,{) and critical strain
energy release rat&g) of the prepared composites were measured usiggesedge-

notched specimens; the tests were performed witmigersal test machine (UTM,
9
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LR5KPIlus, Lloyd Instruments Ltd.) according to ASTBA399. The sample size was 5
x 10 x 50 mm, and the cross-head speed was 0.85 mm*niihe data were averaged

for five specimens.

3. Results and discussion

3.1. Morphology and characterization of GO

Fig. 2 presents TEM and AFM images of GO. The THMge in Fig. 2a
reveals a large area of a GO sheet exhibitingresprarent clean surface and a few thin
ripples, which indicates that the surface functimagion successfully changed the
surface morphology of the GO sheets. The formatifo@O with a wrinkled surface is
often considered beneficial for a strong interfad@neraction with the polar epoxy
matrix. The morphology and thickness of the GO &heaas investigated using AFM,
which offers immediate evidence for ultra-thin nesieets (Fig. 2c). The size of GO
mainly ranged from 0.25 to 5.0 um with an averdgekness of approximately 0.927
nm, indicating the presence of one-atom-thick G@ do the sonication-assisted

exfoliation [27].

10
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The various GO functional groups were examineat@i$tT-IR spectroscopy
and XPS. Fig. 3a presents FT-IR spectra of theipeigraphite and GO, which were
consistent with the data reported in the literafdBs 29]. After modification, a series of
new peaks appeared. The peaks at 3360, 1682, 8w ctf® indicate that the GO
surface was covered with hydroxyl (-OH), carborstée (—C=0), and hydroxyl/ether
(-C-0) groups, respectively, which were formed miyrihe oxidation process in the
chemical exfoliation. These results indicate thhe tO-containing groups were
successfully introduced onto the graphite surfadeés XPS spectra were analyzed to
further identify the surface chemical compositicnsd their changes with the GO
content. The C1s core level spectrum of GO is shiomiig. 3b. As previously reported
in the literature, GO exhibited six different cheally shifted componentssp2 Cc=C
(284.5 eV),sp® C—C/C-H (284.8 eV), C=OH (285.3 eV), C-O-C (286\), C=0
(287.1 eV), and O—C=0 (288.6 eV), confirming thecassful modification based on
pristine graphite. Thus XPS and FT-IR spectra destrate the presence of different
types of oxygen functional groups on the surfac&@f, which could affect the cure
reaction of the epoxy resin.

The interlayer distance (d002) was calculated fitbn C (002) peak of the

XRD pattern using Bragg's law:
11
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nA =2dsiné (1)
where n is an intege#,is the X-ray wavelengtty is the interlayer distance, ands the
diffraction angle.

XRD patterns of the GO and pristine graphite ames@nted in Fig. 3c. The
XRD patterns of the pristine graphite reveal aense diffraction (002) peak abt Z
26.6°, reflecting a d-spacing of 0.335 nm betwedas graphitic interlayers. A well-
defined GO diffraction peak was observed @t=211.03°, indicating that the interlayer
spacing or gap increased to 0.801 nm. This resalirtned that GO was exfoliated into
stacking layered sheets, which is in good agreemiihtprevious results [30].

Fig. 3d presents the TGA curves of the pristirgpgite and GO. The pristine
graphite exhibited high thermal stability and didt lecompose up to 600 °C. The
degradation curve of GO indicates a two-stage p®aeatmosphere. A similar pattern
was observed by Wan et al. and Shen et al. [28, i@ first weight loss occurred
below 100 °C because of the vaporization of watet ather volatile impurities. The
second stage occurred between approximately 206@0dC because of the pyrolysis
of unstable oxygen functional groups such as catbbgdroxyl, and carboxylic groups,

which caused the generation of gases including@®, and steam.

12
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3.2. Sructural characterization of GO/epoxy nanocomposites

The inner structures of the GO/epoxy nanocomp®sitere examined using

TEM. Fig. 4a reveals the homogenous and uniformpadon of GO sheets with an

intercalated-exfoliated and hair-like structurehwiit aggregates and single or ultrathin

sheets with a thickness of less than several natessjedemonstrating the high

compatibility between GO and the epoxy matrix tdieee nanoscale dispersion.

Consequently, by analyzing the nanocomposite mdoglypthe layered structure of the

GO filler, which is supposed to improve the mechahproperties, could be observed.

However, some bundles and stacks appeared whecottient of GO exceeded 1.00

wt% (Figs. 4b and c); because of the increase énGl® content, the agglomerates

became denser, hindering the dispersion of GOenptilymer matrix (Figs. 4b and c,

black arrows). Notably, the interfacial bondingviee¢n GO and the epoxy matrix was

not ideal, leading to degradation of the mecharpoaperties [27].

Fig. 5 presents SEM images of the prepared congsoafter the,c tests. Fig.

5a reveals that the fracture surface of DGEBA waeath and mirror-like. The cracks

spread freely and randomly, which is typical ofttlei fracture and demonstrates the

poor impact strength of the neat epoxy. In contiast prepared composites containing

GO exhibited rough fracture surfaces (Figs. 5bwhich indicated the need of a large
13
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amount of energy during crack propagation and teduh a high impact strength and

fracture toughness. Fig. 5d shows that GO was unlfodispersed in the epoxy resin.

In addition, rough fracture surfaces with numertmgious and fine river-like structures

were observed because of the embedding of GO sineis epoxy matrix. This finding

provides clear evidence of the strong interactietwben the GO sheet and epoxy

matrix. The large surface area and presence ofifandtional groups increased the

interfacial adhesion between the filler and matieading to a significant improvement

of the mechanical properties, which was reflectadthe fracture surface of the

composites. Notably, agglomerates, which reducedntiiechanical properties of the

epoxy matrix, can be observed in Figs. 5e and} [32

3.3. Surface energy

The adsorption (gas—solid), wettability (liquidlidpy adhesion (solid—solid),

and morphology of the component phases were grefftgted by the interfacial and

surface free energy, which is important in evahgtihe physical and mechanical

properties of the composites. The surface freeggnefr the composites was calculated

based on the contact angle formed between thalligi a solid of known surface free

energy. According to Fowkes, Owens, and Wu, thal tetirface free energy can be
14
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divided into two components [33-35]:
y=y-+yT @)

where y* is the dispersive component of the surface freerggnrelated to Lifshitz—
van der Waals interactions that encompass Londspedsion forces, ang¥ is the
specific polar component of the surface free energhted to Debye-inductive

polarization, Keeson forces, van der Waals foraed,hydrogen bonding.

The y¥ component results from electron—acceptor and releetionor
intermolecular interactions, called Lewis acid dake interactions, respectively. The

term y¥ is further divided into two parameters using teemetric mean:
y¥ = N (3)

where y* represents the electron—acceptor parameterjandepresents the electron—

donor parameter. The surface free energy of thel €94 ) is calculated using the

following equation based on van der Waals acid—pasameters:

Vo roost) =2y O, + Ve O, + e O, | (4)

where y, is the experimentally analyzed surface tensiothefliquid, @ is the contact

15
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angle, and the subscripts S and L refer to thel soid liquid phases, respectively. The
subscript i indicates the experimental testing liquid, i.en fthis work, water,

diiodomethane, and ethylene glycol.

Knowing the values ofy;-, y;, and y; for the three liquids and their contact
angles on the solid), a set of Eq. (4) can be simultaneously solvedeiermine the
surface free energy parameters for the sojifl, y<, and y;. Table 2 summarizes the
results of the London dispersive component and ipemomponent, including the

contact angle of the prepared composites for thfasei free energy [20, 26].

The contact angles of the test liquids (distilledter, diiodomethane, and
ethylene glycol) on the prepared composites wer@sored using Young's equation. Fig.
6 presents schematic diagrams illustrating theatians of the contact angle and surface
properties of the GO/epoxy nanocomposites. Theabiitly of the prepared composites
was assessed by evaluating the contact angle efksiles droplet of three different
liquids on the surfaces. The surfaces of the coitggsvere determined to be
hydrophilic if the water contact angle was in thage of 0% ¢ < 90° and hydrophobic
if the water angle was in the range of 909 < 180°. As observed in Fig. 6a, the

distilled water droplet retained an ellipsoidal phan the neat epoxy, with a contact
16
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angle of 75.20° + 2°, suggesting that the neat ypmaterials had a relatively
hydrophilic character. A sharp decrease in theamrdangle of the prepared composites
from 75.20° to 55.24° was observed upon increaiiags0O ratio (Fig. 6). These results
indicate that the GO surface retained the hydrapproperties of the various functional
groups. Upon the addition of GO, the contact argflanged more severely for the
polar-elemental distilled water. This result indesathat among the properties of GO,
the specific component on the surface had a gredfiect than the London dispersion

component [36, 37].

Surface energy is directly related to the adhedmwe, assuming that the
strength of adhesive bonding is proportional to wwek of adhesion. The interfacial
tension and surface free energy values for thegpegbcomposites are reported in Table
2. GO exhibited the maximum total surface free gymemainly because of its
impressive specific polar componentys” , which involved increases in both
parameters of the specific polar component of saerfeee energy,ys and ys . Table 2
lists the y¢ and yg components of the specific polar component. THerfiéddition
led to a systematic increase in the values of the prepared composites with respect to

that of the neat epoxy resin, indicating that theréase in they; component of the

17
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surface free energy could be largely attributedh® polar basic surface functional

groups on the GO sheet. In addition, a major porabthe interfacial interaction was

due to intermolecular acid-base interactions atritexfaces between the matrix and GO.

Notably, the polar component was dependent onuhface activity, which was related

to the surface functional groups, i.e., hydroxyrbonyl, carboxyl, and ether groups.

This interfacial tension increase could be attelduto intermolecular hydrogen bonding

between the GO and epoxy resin, which is one ofabw®rs affecting the specific polar

component of the surface free energy, as demoedttat the FT-IR and XPS results in

Fig. 3. The specific polar component had a moreitant effect on the surface free

energy than the London dispersive component. Thiacaifree energy increased upon

increasing the GO content to 1.0 wt%. However, wtenGO content exceeded 1.00

wt%, GO tended to excessively bond with itself heatthan with the epoxy resin

because of its large surface area and strong vat\dals force. This phenomenon

generated a lengthened grafted chain that formglbmgrates (Fig. S1), preventing the

formation of a tight bridge structure and reducihg binding force, thus leading to a

decrease of the surface free energy [26, 38]. Tdwlomeration and tight bridge

structure in epoxy matrix are illustrated in Fig. 7
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3.4. Mechanical behavior

The mechanical properties of the composites, inofudheir impact strength
and fracture toughness, were investigated, kapdndG,c were determined. The value

of K,c was calculated as follows [39, 40]:

_LIP

K.=z—
Ic bd%

Y 5)

Here, L is the length of the span (mmfp, is the critical load for crack
propagationd is the specimen thickness (mm)is the specimen width (mm), aids

the geometrical factor given by Eq. 6 wéHbeing the pre-crack length (mm):

_ 3a/d"[1.99- (a/d)(1-a/d)(2.15-3.9%vd + (2.7°)/b?)]

Y 6
2(1+ 2a/d)(1- a/d)*? ©
Gic was calculated using,c and the following equation [41]:
1-v?) K{
Gy :% (7)

wherev is Poisson’s ratio of the epoxy resin, taken tdt8[42], ancE is the tensile

modulus acquired from fracture testing.

Fig. 8a shows the impact strength of the GO/ep@yocomposites. The epoxy

19



321 resin was brittle, exhibiting an impact strengttdil + 0.3 kJ-nf, whereas the impact
322 strength of the prepared nanocomposite containi@gn@s nearly 80% higher at 7.24 +
323 0.2 kJ-m2 The addition of GO enhanced the impact strenfithe@composites because
324 of the strong hydrogen bonding between the GO fanat groups and epoxy matrix. In
325 contrast, an increase in the mass ratio of GO (%) led to the formation of

326 agglomerates in the epoxy network. The presenegglomerates led to low interfacial
327 adhesion between the filler and epoxy, thereby ciduthe impact strength. The
328 various GO surface functional groups enhanced thteesion and chemical bonding,
329 which improved the energy absorption during impémEding. In addition, these

330 findings indicate that the well-dispersed GO shewtse considerably more effective
331 than the poorly dispersed sheets in improving thpaict strength of the epoxy resin

332 [43].

333 Fig. 8b shows th&,c andG,c valuesKc andGc of the neat epoxy were 1.39 +
334 0.10 MPa-rH? and 4.48 + 1.20 kJ- T respectively, which are typical values for beittl
335 epoxy materials [44-46]. As expected, the addit@nGO as a filler effectively
336 improved the Kc and G values. The fracture toughness of the prepared

337 nanocomposites was enhanced by increasing the G® The K,c andGc values of

20
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the prepared composites exhibited maximum valudsCawt% GO. The&c value at 1
Wt% GO content, 2.76 + 0.17 MPa“Mmwas 98% higher than that of the neat epoxy.
Notably, the presence of GO in the matrix couldlléa crosslinking through chemical
bonding, such as hydrogen bonding between the dpatioups of the epoxy resin and
various surface functional groups of GO, therelyreasing the critical energy release
and fracture toughness values. In contrast, aduriicrease in the mass ratio of GO
beyond 1.0 wt% led to the formation of micron-scatglomerates within the epoxy
network due to the strong van der Waals force of @fich caused a deterioration of
the mechanical interfacial properties of the epoagocomposites [41, 47]. Therefore, a
better dispersion of GO fillers in the matrix colddve led to crosslinking through
chemical bonding, thereby increasing the criticadrgy release and fracture toughness

values.

In addition, the mechanical properties and surfapergy of the prepared
composites are plotted in Fig. 9. Both graphs revgaod linearity (regression
coefficients ofR® = 0.9615 and 0.9881, respectively) for the retatfop betweeny™
of the surface free energy and the mechanicalfaded properties, such a§c and

impact strength. This result is similar to thosesented in previous reports [48],
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indicating that an increase in the specific polamponent of the surface free energy is
important in enhancing the physical GO filler—epoxyatrix of the prepared

nanocomposites.

4. Conclusions

This study demonstrated that increasing the amoti@O filler leads to an
improvement of the impact strength akd value of GO/epoxy composites. Relative to
the neat epoxy resin, the addition of 1.00 wt% @G6utted in an 80% increase of the
impact strength (from 4.01 + 0.3 to 7.24 + 0.2 kPnand 98% increase of théc
value (from 1.39 #+ 0.10 to 2.76 + 0.17 MP&4n This finding indicates that increasing
the GO filler content led to an increase of the Inagcal interfacial properties, mainly
because the GO hydroxyl groups improved the chdmigading and caused a strong
interfacial interaction between the GO surface apdxy matrix. This phenomenon
clearly resulted in an increase of the specifiapabmponent of the surface free energy
for the intermolecular physical bonding propera@song the three different elements of
the GO/epoxy nanocomposites. This increase in pleeiic polar component of the
surface free energy consequently plays an imporaetin improving the degree of

adhesion at interfaces in the nanocomposite system.
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Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig.5

Fig. 6

Fig. 7

Fig. 8

Fig. 9

Figure Captions

Schematic diagram of the preparation of GO/epoxyonamposites.
Micrographs of GO sheets: (a) TEM image of GO,nflagnified image of the
boxed region in (a), and (c) AFM image of GO.

Characterization of GO sheets: (a) FT-IR speckiaC(s core level of XPS
spectra, (c) XRD patterns, and (d) TGA curves.

TEM images of GO/epoxy nanocomposites with diffe @@ contents: (a) 1.00
wit%, (b) 1.50 wt%, and (c) 2.00 wt%.

SEM images of cross-sectional fracture surfac&s@fepoxy composites: (a)
neat epoxy, (b) 0.25 wt%, (c) 0.50 wt%, (d) 1.0@apte) 1.50 wt%, and (f) 2.00
wit%.

lllustrating the changes of water contact anglthefGO/epoxy nanocomposites:
(a) neat epoxy, (b) 0.25 wt%, (c) 0.5 wt%, (d) W00, (e) 1.5 wt%, and (f) 2.0
wit%.

Schematic diagram of agglomeration and tight brislgecture in epoxy matrix.
Mechanical properties of GO/epoxy nanocomposit@sinipact strength and (b)
fracture toughness.

Dependence of impact strength dtg of GO/epoxy hanocomposites gn
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Fig. 1. Schematic diagram of the preparation of (a) GO and (b) GO/epoxy nanocomposites.



Fig. 2. Micrographs of GO sheets: (a) TEM image of GO, (b) magnified image of the boxed region
in (a), and (c) AFM image of GO.
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Fig. 4. TEM images of GO/epoxy nanocomposites different GO contents: (a) 1.0 wt%, (b) 1.5
wit%, and (c) 2.0 wt%.



Fig. 5. SEM images of cross-sectional fracture surfaces of GO/epoxy composites: (a) neat epoxy, (b)
0.25 wt%, (c) 0.50 wt%, (d) 1.00 wt%, (e) 1.50 wt%, and (f) 2.00 wt%.
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Fig. 6. lllustrating the changes of water contact angle of the GO/epoxy nanocomposites: (a) neat
epoxy, (b) 0.25 wt%, (c) 0.5 wt%, (d) 1.0 wt%, (e) 1.5 wt%,
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Fig. 7. Schematic diagram of agglomeration and tight bridge structure in epoxy matrix.
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Table 1 Surface tension (y,), London dispersive forces (y, - ), and specific (y,S?) components of wetting
liquids (subscript: L).

Wetting liquids yo (MIm3)  ytmIm?) ¢ SP(MIm3)  yr(mIm?) oy (MIm?)
Distilled water 72.80 21.80 51.00 25.50 25.50
Diiodomethane 50.80 50.42 0.38 0.00 0.00

Ethylene glycol 47.70 31.00 16.70 1.92 47.00




Table 2 Surface free energies of GO/epoxy nanocomposites depending on GO contents.

Surface free energy

Specimens
vs(MIm?)  yt(mI-m?) ¢ (MmIm?)  y*(MmIm?)  yo (MI-m?)

Neat epoxy 40.93 39.99 0.94 9.44 0.023
0.25 wt% 4181 40.44 1.37 17.97 0.026
0.50 wt% 42.36 40.65 1.70 22.80 0.032
1.00 wt% 42.72 40.70 2.02 27.31 0.037
1.50 wt% 42.38 40.61 1.77 24.75 0.032
2.00 wt% 42.03 40.50 1.53 24.01 0.024




