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Abstract

The novel phosphorus and nitrogen containing cowalerganic frameworks
nanosheets, DOPO-COFs nanosheets have been syathdéisiough one step and
then incorporated into epoxy resin (EP) by in gtlymerization. The successful
preparation of DOPO-COFs nanosheets have been groyevanishment of P-H
group in FTIR curve of DOPO-COFs nanosheets, naesheet with a lateral size of
several micrometers in TEM image, and presenttobgen and phosphorus elements
in EDS pattern. The DOPO-COFs nanosheets show dispeérsibility in EP matrix.
The well-dispersed DOPO-COFs nanosheets contrifouteermal, mechanical, and
flame retardant performances of EP. The weight lassof EP/3.2 wt% DOPO-COFs
nanosheets decreases by 29.4 %. The storage m@@0A®) and fracture strength of
EP 4 increases by 64.5 % and 15.6 % compared widh of untreated one,
respectively. The PHRR and THR of EP loaded witB ®1% of DOPO-COFs
nanosheets decrease by 18.4 % and 18.5%, respgclikie feasible mode of action
for inhibiting fire hazard of EP nanocomposites aE® been put forward.
Key words. DOPO-COFs nanosheets, flame retardancy, mechapaé&rmance,
pyrolysis, fire hazard.
1 Introduction

Since the difficulty that organic frameworks wikiigh crystallinity are hard to
achieve has been conquered in 2005 [1, 2], covalgainic frameworks (COFs) have
become one of the most concerned research areagedphene due to their intrinsic

micro or mesoporous chemical structure. COFs areo-diwensional or



three-dimensional crystalline organic porous suttsta connected by strong covalent
bonds [3-5]. The reports of preparation of new C@IEsease year by year since 2005.
Now, researchers around the world pay more and rattemtion to preparation of
functional COFs materials and synthesis of two-disn@nal or one-dimensional
COFs derivatives including COFs nanosheets and ®OF®swv spheres.

Dozens of COFs composited by different reagents H#en synthesized [6, 7].
Functional COFs and their derivatives have alrdaglgn applied into every walk of
life including gas storage and separation [8, 8falysis [5, 10, 11], chemical sensors
[12], electrochemical and clean energy [13-17], aado channels [18]. It is reported
that pyrolytic graphite [19], flat faces of Au made homemade single-crystal beads
[20], graphene [7] and hexagonal boron nitride [@é&}) work as a template, resulting
in preparation of COFs nanosheets with several iatdhick. Monolayer COFs
nanosheets can also been prepared at the airj2&jeand solid/vapor interface [22].
COFs nanosheets with several layers have also $g#hesized by ultrasound or
mechanical ball milling. COF-8 prepared from corgiion reaction between
2,3,6,7,10,11-hexahydroxytriphenylene and 1,3&4rphenylboronic acid]benzene
is exfoliated into nanosheets in dichloromethangeursonication [23]. The effect of
sonication conditions and structure characterigiicghe lateral dimensions, thickness,
and quality of exfoliated COFs nanosheets has #&lsen studied [15]. High
thermal-stable COFs nanosheets prepared from ceatien reaction between
triformylphloroglucinol and diamine-containing stéusces have been achieved from
their bulk COFs through ball milling [24, 25]. HoW micro/nanospheres have also
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been prepared without any template [26]. Howeves, method of preparing COFs
nanosheets above are usually low yield and stBesides, raw materials used to
synthesize COFs nanosheets are expensive. Thissjntportant to preparation of

COFs nanosheets through an efficient and convenmetthod. COFs prepared from
condensation reaction between melamine and o-g@itdedlyde (OPA) are

synthesized cheaply and exfoliated easily into sheets in our group [27], which
provides an opportunity to broaden application 6fKS into polymer matrix.

Epoxy resin (EP), as one of the most widespreatieappolymer, has been applied
in electronic and electrical industry, surface ougd, and adhesives, etc. due to its
good performances [28, 29]. However, conventioaiEflammable, which seriously
limits its application in many areas. Thus, a langenber of flame retardants have
been synthesized and applied into EP [30, 31].
9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-ofiid@PO) an one of the most
efficient flame retardants for EP, has been wiggdplied to retard combustion of EP.
However, deterioration of mechanical performancexus due to decreased
cross-linking density of EP resulted from incorgorg of DOPO. In this study, COFs
nanosheets are first reacted with DOPO and thesrpicated into EP through in situ
polymerization. The DOPO-COFs nanosheets not amgtion flame retardancy, but
also have good effect on mechanical performandeRofThe thermal stability, flame
retardancy, mechanical and CO suppression propesfieEP nanocomposites have
also been studied.

2 Experimental



2.1 Materials

EP (DGEBA, E-44) was provided by Hefei Jiangfenge@ical Industry Co. Ltd.
(China). Melamine, methanol, acetone, dimethylsutfe (DMSO), acetic acid (98
wt%), N,N-Dimethylformamide (DMF), 4,4-Diaminodiphg@ methane (DDM), and
tetrahydrofuran (THF) were purchased from Sinoph@imemical Reagent Co., Ltd.
(China). DOPO and OPA were obtained from Aladdire@lstry Co., Ltd. (China).
2.2 Preparation of DOPO-COFs nanosheets

COFs nanosheets prepared from condensation rnedigioveen melamine and OPA
are prepared through ball milling [27]. COFs narezth (1 g) and DOPO (4.6 g) were
dispersed in DMF and then the system was heateld stitring under nitrogen
atmosphere at 12T for 18 h. The resultant DOPO-COFs nanosheets achieved
through filtration and then washing with DMF and HHin order. Finally,
DOPO-COFs nanosheets were re-dispersed in THF witid@sound.
2.3 Preparation of EP/DOPO-COFs nanosheets nanocomposite

DOPO-COFs nanosheets were dispersed in THF unttasalind for 2 h and then
the resultant suspension was mixed with EP dC3for 10 h to remove THF. Finally,
above system which was mixed with DDM was prepanéal samples with different
weight loading of DOPO-COFs nanosheets through fieing heated at 10T for 2
h and then being heated at &0for 2 h. The EP nanocomposites with 0, 0.4, D.8,
and 3.2 wt% DOPO-COFs nanosheets are named asEHPI1),EP 2, EP 3, and EP 4,
respectively. The EP nanocomposite loaded withw8% COFs nanosheets is called
as EP Control. The detailed preparation procedisiminated in Figure 1.
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2.4 Characterization

Chemical groups of samples were characterized hyriémotransform infrared
(FTIR) spectra measured on a Nicolet 6700 spectiemgblicolet Instrument Corp.,
US) with a wavenumber range of 4000 — 400'cfrhermogravimetric analysis (TGA)
curves of samples with a mass range from 3 to 5Smeig investigated on a Q5000
thermoanalyzer instrument (TA Instruments Inc., W&h a linear heating rate of 20
°C min* from room temperature to 86C. X-ray photoelectron spectroscopy (XPS)
was monitored on a VG ESCALAB 250 electron specatmn (Thermo VG.
Scientific Ltd., UK) with an Al Kx line (1486.6 eV). Transmission electron
microscopy (TEM) tests were measured on a JEM-210i@gFoscope (JEOL Co., Ltd.,
Japan) with an acceleration voltage of 200 kV. atwmic force microscopy (AFM)
image was performed in tapping mode through a DltiMode V scanning probe
microscope. Morphologies of fractured surface wshewn on a FEI Sirion 200
scanning electron microscope (SEM) with an accetraoltage of 5 kV (JEOL Co.,
Ltd., Japan) to investigate dispersion state of D@FOFs nanosheets. Dynamic
mechanical analysis (DMA) was analyzed by a DMA Q8strument (TA
Instruments Inc., USA) at a fixed frequency of 1 fiam 25°C to 220°C. Fracture
strength and yield strength of samples were corducin a WD-20D electronic
universal testing instrument (Changchun Intelligestrument Co., Ltd., China) at a
crosshead speed of 2 mm ffiraccording to the Chinese standard method (GB
13022-91). Combustion properties of samples wesplayed on a cone calorimeter
(Fire Testing Technology, UK) according to 1ISO 5&88ndard under a 35 kW™m
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heat flux. The limiting oxygen index (LOI) was mesiion a C-2 oxygen index
meter (Jiangning Analysis Instrument Co., Ltd, Ghiaccording to ASTM D2863-97
standard. UL-94 vertical burning test was conduateda CZF-IlI horizontal and
vertical burning tester (Jiangning Analysis InstannCo., Ltd, China) on the basic of
ASTM D3801 standard. The thermal degradation gaspoaducts were characterized
by a TGA Q5000IR thermogravimetric analyzer, linked a Nicolet 6700 FTIR
spectrophotometer (TG/IR) from room temperaturg0°C with a heating rate of 20
°C/min in helium atmosphere. A LABRAM-HR laser coofid Raman spectroscope
(Jobin Yvon Co., Ltd, France) with a 514.5 nm ardmser line was applied to study
the degree of graphitization of char residues ofdas.

3 Results and discussions

3.1 Characterization of COFs and DOPO-COFs nanosheets.

The FTIR, TEM, XRD and EDS tests have been donénvestigate chemical
bonds, morphology and element constitute of samplsshown in Figure 2 (a), the
peaks of COFs at 3401, 1726, and 1350" @re assigned to stretching vibration of
NH groups in aromatic ring, unreacted aldehyde gramd -NH- stretching vibration,
respectively [32-34]. The successful incorporatidrmelamine into COFs is proved
by two peaks centered at 1568 and 1469 cmhich represent the quadrant and
semicircle stretching of the s-triazine ring [3%he peaks of COFs at 1209 and 810
cm™* belong to aromatic stretching vibration of C-N Hofthe peak in FTIR curve of
DOPOcentered at 3058 chis attributed to C-H stretching vibration of aroinaing.
The bonds at 1614, 1510 and 1471 dmlong to vibration of benzene ring skeleton
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[36]. The peak of DOPO centered at 2437 amrresponds to stretching vibration of
P-H bond [37]. The presence of P=0 (1143%rand P-O-Ph (1117 ¢h bonds of
DOPO is also testified in Figure 2 (a) [38]. Itabvious that bond of P-H group
disappears in FTIR curve of DOPO-COFs nanosheatiicdting occurrence of
reaction between DOPO and COFs nanosheets [28|dd¥est is shown in FTIR
curve of DOPO-COFs nanosheeets that the peaksredrae 1157 and 1093 chare
P=0 and P-O-Ph stretching vibrations of DOPO, retpaly. In Figure 2 (b), the
intensity of typical peak of DOPO-COFs nanoshedtsaraund 23.% decreases
compared with that of COFs, indicating that COFexfoliated. It is deduced from
Figure 2 (c) that three-dimensional porous COFsaaheeved. As shown in Figure 2
(d), two-dimensional DOPO-COFs nanosheets with tardh size from several
hundred nanometers to several micrometers are n@etgaccessfully. The present of
nitrogen and phosphorus element in energy dispersipectrometer (EDS) of
DOPO-COFs nanosheets also indicates that COFs megtssare modified by DOPO
successfully.

The thickness and structure of DOPO-COFs nanoshests been investigated
further through AFM test. It is obvious that all nhno-material in Figure 3 (a)
presents two-dimensional sheets. The thicknessesxfifiated DOPO-COFs in
Figure 3 (b) vary from 7 to 35 nm correspondingil®PO-COFs nanosheets in
Figure 3 (a). The three-dimensional image of DORQFE nanosheets are displayed
in Figure 3 (c), it is significant that the thiclgseof DOPO-COFs nanosheets is not
consistent, which is same as the results in Figyi®.
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Atom composition and chemical bonds of DOPO-COFsoeheets have been
studied further in Figure 4 and related data ofrap@rcent have been listed in Table 1.
The nitrogen, oxygen, carbon and phosphorous atawe been confirmed in wide
XPS scanning spectrum of DOPO-COFs nanosheets. s Itinferred from
high-resolution XPS spectra ofi{that the peaks at 284.5 eV, 285.1 eV, 286.2 eV,
287.3 eV and 280.0 eV are assigned to C-C, C-N/C-B;P, C=N, and C=0 bonds,
respectively [39, 40]. The peaks inMigh-resolution XPS spectra of DOPO-COFs
nanosheets represent N=C (398.4 eV) and N-H (389)7[35]. The characteristic
peak at 133.0 eV in Rhigh-resolution XPS spectra corresponds to P-C-0® or
P=0 bond [41]. Thus, it is concluded that DOPO-C@&sosheets are prepared.

3.2 Thermal stability of DOPO-COFs nanosheets and their EP hanocomposites.

TGA and DTG curves of DOPO-COFs nanosheets andaBBocomposites under
nitrogen atmosphere are shown in Figure 5 andlddtdata are listed in Table 2. It is
significant that COFs nanosheets degrade earker titmat of COFs, which may be the
reason for pyrolysis of low molecular fragments sl by ball milling of COFs.
However, thermal stability of COFs nanosheets mmes sharply after modified by
DOPO. The temperature at 5 wt% weight loss d) of DOPO-COFs nanosheets
increases by 10IC from 199 to 301°C compared with that of COFs nanosheets.
Besides, the char residues of DOPO-COFs nanosimeetase by 46.1 % compared
with that of COFs. It is also inferred from Figuke (b) that weigh loss rate of
DOPO-COFs nanosheets is lower than that of COFgs,TDOPO-COFs nanosheets
display good thermal stability. As shown in Figbréc), it is obvious that weight loss
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rate of EP/3.2 wt% DOPO-COFs nanosheets decregszs.4 % compared with that
of neat EP, indicating incorporating of DOPO-CORBsasheets into EP contributes to
retardation of pyrolysis of EP. However, the ., of EP nanocomposite decreases
slightly compared with that of untreated one due thermal degradation of
DOPO-COFs in advance. It is observed from TGA cutlat incorporating of
DOPO-COFs nanosheets has little influence on atvamihg of EP nanocomposite,
which may be explained that DOPO functions flantelition in gaseous phase [42].
3.3 Fractured surface characteristic and mechanical performance of EP and its
nanocomposites.

The dispersion state of DOPO-COFs nanosheets fratured surface of EP
nanocomposite are investigated through SEM testBidure 6, the fractured surface
of neat EP is smooth. It is obvious that fractusadace of EP 4 is rougher than that
of untreated one. This is due to strong interfaeidhesion between DOPO-COFs
nanosheets and EP matrix. Besides, there is almoagglomeration of DOPO-COFs
nanosheets found in fractured surface of EP 4 f&#M images. In another word,
DOPO-COFs nanosheets disperse well in EP matrixshhsvn in Figure 6, the EP
Control also shows a rough fractured surface. Hawew Figure 6 (e), there are a
large number of chippings, which may be due toapgregation of COFs nanosheets
in EP matrix. To further characterize the distribntof DOPO-COFs nanosheets in
EP matrix, TEM ultrathin section images of EP Coh&ind EP 4 has also been done.
As shown in Figure 7 (a), COFs nanosheets aggrag&® matrix in a certain degree.
However, no agglomeration of DOPO-COFs nanosheetsirs although at high
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weight loading (3.2 wt%). This may be because C@BRaosheets show better
compatibility in EP matrix after being modified bpOPO, leading to good

dispersibility of DOPO-COFs nanosheets in EP maBesides, the DOPO-COFs still
maintain their nanosheets structure in EP matrhxs Tesult is consistent with the
results of SEM test.

Storage modulus and fracture strength of EPiendanocomposite have been
studied and related dynamic mechanical propertysara$s-strain curves of samples
have been illuminated in Figure 8. It is signifitéimat storage modulus and fracture
strength of EP loaded with 3.2 wt% of DOPO-COFsasaeets is enhanced sharply
compared with that of neat one. The storage mod@dSC) and fracture strength of
EP 4 increases by 64.5 % and 15.6 % compared widh of untreated one,
respectively. This is because DOPO-COFs nanosHesgtisay better compatibility and
tighter interfacial adhesion in EP than that of G@Enosheets.

3.4 Combustion performances of EP and its nanocomposites.

Combustion property, as one of the most imporgerformances to evaluate fire
hazards, has been investigated through cone catgm_Ol and UL-94 vertical
burning tests. Heat release rate (HRR), and t&tal release (THR) curves of EP and
its nanocomposites have been shown in Figure Stlandletailed data are listed in
Table 3. The detailed data of LOI and UL-94 vettizarning tests are also listed in
Table 3. As you can see, incorporating of DOPO-Cdrsosheets has little influence
on enhancement of UL-94 vertical burning rating. &Ithe samples are no rating in
UL-94 vertical burning test. However, the LOI valoEEP nanocomposite increases
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with enhanced weight loading of DOPO-COFs nanoshdéte LOI of EP 4 is 25 %.
The peak heat release rate (PHRR) and THR of EPea®e obviously after
incorporating of DOPO-COFs nanosheets. The PHRRT&HRI of EP loaded with 3.2
wt% of DOPO-COFs nanosheets decrease by 18.4 %18rkPo, respectively.
However, the PHRR and THR of EP Control are higihen that of EP 4, which
means modifying COFs nanosheets with DOPO congtbhetter flame retardancy to
EP. The PHRR and THR of EP 2 are lower than thatlér samples, this may be the
reason for operation error during cone caloriméssts. The related digital images of
samples after cone calorimetry tests are displaydeigure 10. The amount of left
char residues increases slightly with increasedghteioading of DOPO-COFs
nanosheets.

3.5 Flame retardant mode of action in condensed and gaseous phases.

To further study why flame retardancy of EP nanggosite is enhanced obviously
with only slightly increase of char residues ?uefice of incorporating DOPO-COFs
nanosheets on release of gaseous pyrolysis prooiUER during thermal degradation
has been studied by TG/IR test. The FTIR spectraPbfand EP 4 at the maximum
pyrolysis rate are displayed in Figure 11. Thereaobvious difference between two
FTIR spectra of EP and EP 4, indicating the samiatil® components during
pyrolysis. The characteristic absorption peaks6&63 2977, 2356, 2180, 1752, and
1512 cm' are ascribed to # and/or phenol, hydrocarbons, £aCO, carbonyl
compounds, and aromatic compounds, respectively44i3

To investigate the changes of release of volatyelgsis products further, the
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absorbance of pyrolysis products for EP and EP rdugetemperature is shown in
Figure 12. The release of volatile components of#ERcurs at around 35C which

is lower than that of neat one. This result is sirat with that of TGA result. The
absorption intensity of total pyrolysis product@nimable products (carbonyl and
aromatic compounds) and toxic gas (CO) resulteah fifteermal degradation of EP 4 is
lower than that of EP 0, this may contribute touattn of PHRR of EP 4. However,
incorporating of DOPO-COFs nanosheets has litfleence on absorption intensity
of hydrocarbons during pyrolysis. The intensityelbased C@ncreases, this may be
caused by decomposition of pyrolysis products.

Raman tests of EP and its nanocomposites have dmatucted to study flame
retardant mode of action in condensed phase. TheaR&pectra of char residues of
samples have been shown in Figure 13. The pealereeh@at around 1365 ¢m
belongs to D bond which is resulted from the viloratof sg-hybridized carbon
atoms in graphite layer. The G bond at around 1585 represents angEmode of
hexagonal graphite [45]. The graphitization degrethe residual char is evaluated by
the integrated intensities of D to G bongd/(k). The b/lIsof EP Control is lower than
that of untreated EP but higher than that of ER . explained that incorporating of
DOPO-COFs nanosheets has better influence on emmamt of graphitization
degree of residual char of EP than that of COFstagets. The char with higher
graphitization degree shows better thermal stghalitd char quality, leading to better
physical barrier effect. Thus, release of gaseguslysis products and PHRR of EP
nanocomposite decrease.
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The feasible mode of action for inhibiting fire lad of EP nanocomposites is
shown below. COFs nanosheets show better dispégsidhd compatibility in EP
after being modified by DOPO. In condensed phdsewell-dispersed DOPO-COFs
nanosheets contribute to graphitization degrednaf,gesulting in reduction of PHRR
and gaseous pyrolysis products including CO, cafband aromatic compounds.
Thus suppression of fire hazards of EP is achieved.

4 Conclusions

A novel phosphorus and nitrogen containing CORsosheets, DOPO-COFs
nanosheets have been synthesized and appliedvaes itdardant for EP. Not only are
combustion performances of EP increased, but alschamical property of EP is
enhanced. The gaseous pyrolysis products inclu@i@g carbonyl and aromatic
compounds are also decreased due to physical basfiect. The successful
preparation of DOPO-COFs nanosheets is proved byslaent of P-H group in
FTIR curve of DOPO-COFs nanosheets, nano-size shettt a lateral size of several
micrometers in TEM image, and present of nitrogeeh phosphorus elements in EDS
pattern. The thermal stability of COFs nanoshegtsidreased obviously.s i, and
char residues of DOPO-COFs nanosheets increas@b§Cland 46.1 % compared
with that of untreated one under nitrogen. The Weilpss rate of EP/3.2 wt%
DOPO-COFs nanosheets also decreases by 29.4 9tdrage modulus (3C) and
fracture strength of EP 4 increases by 64.5 % &m@ % compared with that of
untreated one, respectively. The PHRR and THR ofldaded with 3.2 wt% of
DOPO-COFs nanosheets decrease by 18.4 % and 1&5p&ctively. DOPO-COFs
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nanosheets display better dispersibility and corji&g in EP compared with that of
COFs nanosheets. The well-dispersed DOPO-COFs Inegtss contribute to
graphitization degree of char, resulting in reduttof PHRR and release of gaseous
pyrolysis products.
Supplementary material

TGA and DTG curves of EP and its nanocompositeguan atmosphere.
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Table captions

Table 1 XPS data of COFs and DOPO-COFs nanosheets.

Table 2 TGA data of COFs, COFs nanosheeets, and DOPO-G@ttsheets under
nitrogen atmosphere.

Table 3 Cone calorimeter, LOI and UL-94 vertical burniegts data of EP and its

nanocomposites.
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Table 1 XPS data of COFs and DOPO-COFs nanosheets.

Sample C(at%) O (at%) N (at%) P (at%)
COFsnanoshesets 64.9 7.6 275 -
FCOFs nanoshesets 63.0 11.6 24.7 0.7
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Table 2 TGA data of COFs, COFs nanosheeets, and DOPO-@G&tesheets under

nitrogen atmosphere.

Sample Tswie (°C) Tmax(°C)  Residue (wt%)
COFs 334 416 26.9
NCOFs 199 353 32.6
DOPO-NCOFs 301 342 39.3

NCOFs: COFs nanosheets
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Table 3 Cone calorimeter, LOI and UL-94 vertical burniegts data of EP and its

nanocomposites.

Sample  TTI PHRR THR LOI (%) UL-94

(s) (kW/m?  (MJI/m?)

EPO 58.0 1369 135.6 23.5 NR
EP1 70.2 1295 133.4 23.5 NR
EP2 64.0 1086 125.3 24.0 NR
EP3 58.6 1227 131.5 24.5 NR
EP4 60.7 1117 110.5 25.0 NR
Control 55.0 1295 140.4 24 NR
NR: No rating.
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Figure captions

Figure. 1 Schematic for (a) synthetic route of bulk COFs; gl®paration process of
DOPO-COFs nanosheets and EP nanocomposites.

Figure. 2 (a) FTIR spectra and of COFs, DOPO-COFs nanoshaets DOPO; (b)
XRD patterns of COFs and DOPO-COFs nanosheets; Tadde of (c) COFs, (d)
DOPO-COFs nanosheets and (e) EDS pattern of DOPEs@@nosheets.

Figure. 3 (a) AFM image of DOPO-COFs nanosheets; (b) hepgbtiles along the
lines in image (a); (c) three-dimensional imagd@PO-COFs nanosheets in image
(a).

Figure. 4 (a) wide XPS scanning spectrum of DOPO-COFs nanosheets;
high-resolution (b) &, (c) Nis, and (d) B, XPS spectra of DOPO-COFs nanosheets.
Figure. 5 (a,b) TGA and DTG curves of COFs, COFs nanosheetsDiOPO-COFs
nanosheets under nitrogen atmosphere; (c,d) TGARMM@ curves of EP and its
nanocomposites under nitrogen atmosphere.

Figure. 6 SEM images of fractured surface of (a,b) EP @J)(EP 4, and (e,f) EP
Control at different magnifications.

Figure. 7 TEM ultrathin section images of (a) EP Control #bdEP 4.

Figure. 8 (a) Storage modulus and (b) stress-strain curveSROD, EP 4, and EP
Control.

Figure. 9 (a) HRR and (b) THR curves of EP and its nanocasites.

Figure. 10 Digital images of (a) EP 0, (b) EP 1, (c) EP 2, 3, (e) EP 4, and (f)
EP Control after cone calorimetry tests.
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Figure. 11 FTIR spectra of pyrolysis products from EP 0 and4E& the maximum
evolution rate.

Figure. 12 Absorbance of characteristic peaks of volatilipgblysis products of EP
0 and EP 4.

Figure. 13 Raman spectra of char residues of (a) EP O, (1),E®) EP 4, and (d) EP

Control.
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Figure. 3 (a) AFM image of DOPO-COFs nanosheets; (b) hgighfiles along the

lines in image (a); (c) three-dimensional imag®afPO-COFs nanosheets in image

(@).
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Figure. 4 (a) wide XPS scanning spectrum of DOPO-COFs nanosheets;

high-resolution (b) &, (c) Nis, and (d) B, XPS spectra of DOPO-COFs nanosheets.
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Figure. 6 SEM images of fractured surface of (a,b) EP @)(EP 4, and (e,f) EP

Control at different magnifications.
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Figure. 7 TEM ultrathin section images of (a) EP Control #bdEP 4.
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Figure. 8 (a) storage modulus and (b) stress-strain curvé&$d, EP 4, and EP

Control.
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Figure. 9 (a) HRR and (b) THR curves of EP and its nanocsies.
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Figure. 10 Digital images of (a) EP 0, (b) EP 1, (c) EP 2,K&) 3, (e) EP 4, and (f)

EP Control after cone calorimetry tests.
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Figure. 13 Raman spectra of char residues of (a) EP 0, (d),&® EP 4, and (d) EP

Control.
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Highlights

A novel phosphorus and nitrogen containing covalent organic frameworks (DOPO
-COFs) nanosheet has been synthesized first.

The dispersibility of DOPO-COFs nanosheets, the flame retardancy (PHRR, THR,
therma degradation rate, and char residues), mechanical performance and CO
suppression of EP/DOPO-COFs nanosheets have been enhanced obviously.

The feasible mechanism for inhibiting fire hazard of EP nanocomposites has also been

put forward.



