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A B S T R A C T   

The development of a physically based constitutive model for glass fiber reinforced boehmite nanoparticle-filled 
epoxy nanocomposites undergoing finite strain is investigated. The constitutive model allows capturing the main 
features of the stress-strain relationship of the nanocomposites, including the nonlinear hyperelastic, time- 
dependent and softening behavior. A methodological framework based on molecular dynamics simulations 
and experimental tests is proposed to identify the material parameters required for the model. The fiber-matrix 
interaction is characterized by a composite model, which multiplicatively decomposes the deformation gradient 
into a uniaxial deformation along the fiber direction and a subsequent shear deformation. The effect of the 
nanoparticles on the stress–strain response is taken into account through the adoption of a modulus enhancement 
model. The Eyring model parametrized using molecular simulations is used to describe the rate-dependent 
viscoelastic deformation under loading. The stress softening behavior is captured by a monotonically 
increasing function of deformation, so-called softening variable. The results show that the model predictions of 
stress-strain relationships are in good agreement with experimental data at different fiber and nanoparticle 
weight fractions. Finally, the constitutive model is implemented in the finite element analysis and examined by 
means of a benchmark example. Experimental–numerical validation confirms the predictive capability of the 
present modeling framework, which provides a suitable tool for analyzing fiber reinforced nanoparticle/epoxy 
nanocomposites.   

1. Introduction 

Materials science is expected to produce major breakthrough dis
coveries in the coming decades to meet the increasing technological 
need for more resistant yet lightweight materials used under extreme 
thermomechanical loading conditions. Continuing research activity 
concentrating in the field of synthetic composites has promised to 
develop a class of high-performance glass fiber (GF) reinforced epoxy 
composites containing various nanofillers such as nanoparticles and 
nanotubes [1,2]. The utilization of nanoscale fillers in polymer matrices 
has two important impacts on their material behavior. Firstly, nano
particles show uniquely different physical and chemical properties from 
their bulk counterparts, which is related to having a larger portion of 
their atoms on the surface. Secondly, the extremely high 
surface-to-volume ratio of nanoparticles offers more contact surface area 
that can be 1000 times greater than of micro-sized particles. This allows 
efficient load transfer from the matrix to the reinforcements that is the 

key to achieving high-performance materials. Recently, boehmite 
nanoparticles (BNPs) have shown promising results to improve the 
material properties of the composites such as the shear strength, shear 
modulus, compressive strength and fracture toughness [3–5]. 

Although the resulting fiber reinforced BNP/epoxy nanocomposites 
have proven to be suitable for different engineering applications, the 
prediction of their mechanical behavior under different loading condi
tions has become a real challenge. This is mainly due to the nonlinear 
stress-strain behavior of the nanocomposites resulting not only from 
external factors (such as strain rate and temperature), but also from 
microstructural parameters (such as the fiber and nanoparticle weight 
fractions). A typical stress-strain relationship of the nanocomposites 
under tensile loading can be divided into three distinct stages: (1) an 
initially linear increase of stress with stain, (2) a nonlinear behavior due 
to the presence of nonlinear viscoelasticity and hyperelasticity at higher 
strains, and (3) a decrease in stress after the stress peak value by 
increasing strain. The softening behavior may be originated from 
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irreversible phenomena, such as cavitation and chain scission, which 
leads the stress reduction in the softening stage [6]. Considering the 
complex material behavior, a predictive constitutive model that is able 
to accurately capture the thermomechanical viscoelastic behavior of the 
nanocomposites is indispensable to predict the stress-strain 
relationships. 

In oder to rationalize the viscoelastic behavior of epoxy resins and 
their composites, a number of material models have been proposed in 
the literature to quantitatively capture experimental data [7–12]. Basi
cally, the models can be divided into physically and phenomenologically 
based constitutive models. In the phenomenological approach, a math
ematical model with a set of parameters is defined for materials with 
similar behavior to fit experimental results. However, the optimum 
number of the parameters and their physical interpretation are missing 
since the underlying physical mechanisms at micro-scale do not enter 
the parameters. Despite the inherent limitations of phenomenological 
models, due to the complexity of the material behavior of reinforced 
epoxy resins and the lack of deep physical insights into their deforma
tion mechanisms at the micro-scale, some authors proposed purely 
phenomenological models [13–18]. 

To improve on this, physically based constitutive models can play an 
important role in the development of material models by (1) exploring 
the relationships between stresses and deformations at the micro-scale, 
(2) adding new physical insights into mechanisms at molecular level and 
(3) removing unnecessary assumptions. The physically based constitu
tive models can offer a systematic material parameters identification 
since they are able to extrapolate outside of the range of direct experi
mental validation. Up to now, some studies have been conducted to 
develop physically based constitutive models for polymers by taking 
into account their microstructures [19–25]. Van Dommelen et al. [21] 
proposed a constitutive model for the viscoelastic-viscoplastic defor
mation of semi-crystalline polymers in which the material is modeled as 
an aggregate of two-phase layered composite inclusions. In their ideal
ized model, each crystalline lamella is mechanically coupled to its cor
responding amorphous layer by enforcing compatibility and traction 
equilibrium at the interface. An alternative representation of the 
microstructure based on composite-type formulations was proposed by 
Boyce et al. [19] and later developed by Ahzi et al. [22] and Ayoub et al. 
[24], in which the degree of crystallinity is explicitly introduced in the 
formulations. In the model, the stress-strain behavior is described by two 
resistances to deformation: (1) an intermolecular barrier that is further 
amplified by the of strain-induced crystallization; and (2) an evolving 
anisotropic resistance due to molecular orientation. On the basis of the 
model, Qi and Boyce [23] developed a constitutive model capturing the 
main features of the material behavior of semi-crystalline polymers, 
including the nonlinear hyperelastic behavior, time dependence, hys
teresis and stain-induced softening. The constitutive model decomposes 
the stress-strain behavior into rate-independent equilibrium and 
rate-dependent viscoelastic–plastic parts. Miehe and G€oktepe [26] bor
rowed the concepts of the tube model to develop a constitutive model for 
finite strain viscoelasticity of rubber-like materials. They assumed that 
the rate-dependent response of rubbery polymers is driven by 
micro-kinematical mechanisms related to the stretch and the area 
contraction of a tube containing a prototype chain. Li et al. [27] pro
posed a physically based constitutive model to capture the finite strain 
viscoelastic behavior of elastomers by decomposing the elastomers into 
a cross-linked network with superimposed free chains. A procedure 
based on molecular dynamics (MD) simulations and experimental tests 
were developed to identify the material parameters. 

Although constitutive models with physically motivated derivations 
exit in the literature, the models usually contain a large number of 
material parameters that are difficult to derive from the mechanical 
behavior or from considerations of the microstructure of the polymer 
network. A unique identification of the parameters for a wide range of 
loading conditions (e.g., strain rate and temperature) often requires very 
sophisticated and complicated experimental setups, which make the 

identification process unfeasible. In most cases, the determination of the 
material parameters is oversimplified to a curve fitting problem based 
on the minimization of differences between model results and experi
mental data, regardless of the uniqueness and the physical meaning of 
the parameters. Furthermore, the effect of fiber and nanoparticle con
tents on the stress-strain relationship of cross-linked amorphous poly
mers has not been considered in the models. In this view, the 
development of a framework based on molecular simulations and ex
periments is of great practical value to (1) explore the deformation 
mechanisms at the molecular level, (2) deterministically predict the 
material parameters and (3) limit the number of experimental tests 
required for material parameters identification. 

In this study, to tackle the viscoelastic damage behavior of fiber 
reinforced BNP/epoxy nanocomposites, we present a physically based 
constitutive model, which accurately captures the nonlinear hypere
lastic, time-dependent and softening behavior of the nanocomposites 
under finite strain (Section 2). In seeking a robust identification pro
cedure, a methodological framework developed based on MD simula
tions and experimental tests for predicting the material parameters is 
proposed. Within this framework, MD simulations are performed to 
investigate the time-independent equilibrium and rate-dependent 
viscoelastic behavior of the epoxy matrix (Section 3). Molecular simu
lations of the epoxy resin under tensile loading at various strain rates 
enable the identification of viscoelastic material parameters. The long- 
term stress relaxation of the epoxy under a constant shear strain is 
also investigated using MD simulations by which the material parame
ters associated with the time-independent response are obtained. 
Furthermore, the softening parameter is measured by experiments 
because of the lack of exact knowledge about the mechanism of damage 
in the nanocomposites. A composite model, which multiplicatively de
composes the deformation gradient into a uniaxial deformation along 
the fiber direction and a subsequent shear deformation, is adopted to 
characterize the fiber-matrix interaction. A modulus enhancement 
model is also used to account for the effect of BNP content on the ma
terial behavior. Finally, the constitutive model is implemented in a 
nonlinear incremental finite element analysis (FEA) to evaluate its 
applicability in real applications (Section 4). The predictive capability of 
the constitutive model is validated by comparing the simulation results 
of uniaxial tensile and four-point bending tests at room temperature 
with those of experimental data. The numerical results highlight the 
efficiency and accuracy of the proposed model. 

The present study offers a deterministic method to identify the ma
terial parameters required to capture the stress-strain behavior of fiber 
reinforced nanoparticle-filled epoxy nanocomposites. All the parameters 
are directly obtained from molecular simulations or measured by 
experimental tests. Beyond this, the present study may have a broad 
impact on the constitutive modeling of nanocomposites, in the sense that 
the proposed framework can be extended to other types of reinforced 
polymer nanocomposites. 

2. Constitutive modeling of fiber reinforced nanocomposites 

In the following section, we propose a viscoelastic damage consti
tutive model for the GF-reinforced BNP/epoxy nanocomposites. A 
composite-based hyperelastic constitutive model previously introduced 
in the literature [28,29] is first presented to construct an appropriate 
expression for the strain energy stored in the fiber reinforced compos
ites, and to consider the fiber-matrix interaction. The model is then used 
to develop a viscoelastic damage model for the nanocomposites. Next, a 
procedure for identifying the material parameters for the constitutive 
model is outlined. 

2.1. Strain energy for fiber reinforced composites 

It has been shown that a multiplicative decomposition of the defor
mation gradient can be used to construct the strain energy function for 
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transversely isotropic fiber reinforced composites [28–30]. The key 
concept is to decompose the deformation gradient into uniaxial defor
mation along the fiber direction and a subsequent shear deformation. 
Here, we briefly present the development of a strain energy for fiber 
reinforced composites. 

A macroscopic deformation gradient F contains a volumetric portion 
that can be taken out through F ¼ J� 1=3F, where J ¼ det½F�. Let a0 be 
the original fiber direction. After the deformation F, the deformed fiber 
direction Fa0 can be rotated back to the original fiber direction by rigid 
body rotations defined by a new deformation gradient F�. Since only 
rigid body rotations are involved, we therefore have [28]. 

C¼FT F ¼ F�
T

F�: (1) 

As shown in Ref. [28], the deformation gradient F� can be multi
plicatively decomposed into a uniaxial deformation along the fiber di
rection F�f and a shear deformation F�s as 

F� ¼ F�f F�s ; (2)  

where 

F�f ¼ diag
�

λF λ� 1=2
F λ� 1=2

F

�
; (3a)  

F�s ¼

2

4
1 F�12λ1=2

F F�13λ1=2
F

0 1 F�23λ1=2
F

0 0 1

3

5; (3b)  

and λF ¼
�
�Fa0

�
� represents the stretch of the fiber. 

The strain energy of a fiber reinforced composite can be developed 
using the described decomposition as 

ψ
�
I1; I2; I4; I5

�
¼ψf

�
I1; I4

�
þ ψs

�
I1; I4; I5

�
; (4)  

where ψ f and ψ s are the strain energy terms of the composite associated 
with the uniaxial deformation along the fiber direction F�f and the shear 

deformation F�s . I1, I2, I4 and I5 are defined as 

I1¼ tr
�
C
�
;

I2¼
1
2

��
tr
�
C
��2
� tr
h
C2
i�
;

I4¼ a0 ⋅ C ⋅ a0;

I5¼ a0 ⋅ C2 ⋅ a0

(5) 

The strain energy stored in the composite during the deformation F�f 
is given by 

ψf ¼ψM
f þ ψF

f ¼
1
2

νMμM

h
I1

�
F�f
�
� 3
i
þ

1
2

νFμMf
�
I4
�h

I1

�
F�f
�
� 3
i
; (6)  

where νM and νF are respectively the matrix and fiber volume fractions 

(νM þ νF ¼ 1). I1ðF
�

f Þ¼ λ2
F þ

2
λF
¼ I4 þ 2I� 1=2

4 is the first invariant of the 

tensor C�f ¼ F� T

f F�f . μM is the shear modulus of the matrix, and fðI4Þ

represents the stiffness ratio between the fiber and the matrix prescribed 
to be [29]. 

f
�
I4
�
¼ a1 þ a2 exp

�
a3
�
I4 � 1

��
; (7)  

where a1; a2 and a3 are positive parameters, which are determined 
through a calibration process discussed later. 

An expression for the strain energy stored in the composite during 
the shear deformation F�s is given by 

ψs ¼
1
2
μC

h
I1 � I1

�
F�f
�i
; (8)  

where μC is the effective shear modulus of the composite obtained using 

the Halpin-Tsai micromechanics based equations [31] as 

μC

μM
¼

1þ ζηνF

1 � ηνF
; (9) 

To extend the equation to the large deformation, η can be calculated 
from 

η ¼
f
�
I4
�
� 1

f
�
I4
�
þ ζ

; (10)  

in which 

ζ ¼
�

1 in � plane shear
0:4 transverse shear : (11) 

Considering Eqs. (9) and (10), the strain energy under shear defor
mation can rewritten as 

ψs ¼
1
2

μMg
�
f
�
I4
�
; νF ; ζ

�h
I1 � I1

�
F�f
�i
; (12)  

where 

g
�
f
�
I4
�
; νf ; ζ

�
¼

μC

μM
¼
ð1þ ζνFÞf

�
I4
�
þ ð1 � νFÞζ

ð1 � νFÞf
�
I4
�
þ ðζ þ νFÞ

: (13)  

and 

I1 � I1

�
F�f
�
¼

I5 � I2
4

I4
þ I1 �

I5 þ 2
ffiffiffiffi
I4

p

I4
: (14) 

The strain energy function derived for a fiber reinforced composite in 
Eq. (4) can be homogenized for a composite with N number of families of 
fiber reinforcements illustrated in Fig. 1. Let ai

0 be the unit vector 
denoting the original direction of the family of fibers i with the volume 
fraction νi (νF ¼

PN
i¼1νi

F). The homogenized strain energy function is 
then the sum of the strain energies for the N families of fibers, i.e., 

ψt ¼
1
νF

XN

i¼1
νi

Fψi; (15)  

where 

ψi ¼
1
2

νMμM

h
I1

�
F�if

�
� 3
i
þ

1
2
νFμMf

�
Ii

4

�h
I1

�
F�if

�
� 3
i

þ
1
2
μMg

h
f
�

Ii
4

�
; νF; ζ

ih
I1 � I1

�
F�if

�i
:

(16) 

In the formula above, the fiber–fiber interaction is eliminated to 
simplify the constitutive model. 

2.2. Viscoelastic damage constitutive model 

To rationalize the viscoelastic behavior of fiber reinforced nano
particle/epoxy nanocomposites, their stress response is decomposed 
into a hyperelastic (time-independent equilibrium) part and a viscous 

Fig. 1. Schematic of a composite with a number of families of fiber 
reinforcements. 
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part (rate-dependent non-equilibrium). The time-independent equilib
rium part of the stress–strain behavior, comprising of a hyperelastic 
rubbery spring, is associated with the entropy change of the polymer 
network due to deformation. The rate-dependent non-equilibrium part 
consists of a nonlinear spring characterizing the initial elastic contri
bution due to internal energy change, and a nonlinear viscoplastic 
dashpot capturing the rate and temperature dependent behavior of the 
material (see Fig. 2). The elastic behavior is assumed to originate from 
the connectivity and stretching of the polymer network and interactions 
between fiber and nanoparticle reinforcements, and polymer chains. In 
contrast, the viscous behavior is taken to be governed by frictional in
teractions between polymer chains. The rate-dependent non-equilib
rium part tends to relax the elastic deformation and hence produces the 
relaxation of the stress–strain behavior to the equilibrium path with 
time. In addition, the viscoplastic behavior of the nanocomposites comes 
from different energy dissipation sources during deformation, including 
the breakage of bonds and interactions between polymer and nano
particle [23]. The quasi-irreversible rearrangements of microstructures 
result in stress softening in the material known as Mullins effect [32,33]. 

A constitutive model for the finite deformation viscoelastic damage 
behavior of the composite polymer should be able to capture four main 
features of the material behavior. The features are (1) the nonlinear 
elastic behavior under large deformation, (2) the time dependent ma
terial response, (3) softening of the equilibrium paths during deforma
tion, and (4) the effect of fiber and nanoparticle content on the 
mechanical properties. The model is detailed in the following section. 

The total deformation gradient Ft in viscoelasticity is determined 
from an exploitation of the multiplicative decomposition as [34]. 

Ft ¼ FeFv; (17)  

where Fe represents the elastic portion of the motion and Fv is associated 
with the inelastic motion of the material. 

The overall free energy of the material can be decomposed into an 
equilibrium and a non-equilibrium part, i.e., 

ΨðCt;Fv; dÞ ¼ ð1 � dÞ
�
ΨeqðCtÞþΨneq

�
F� T

v CtF� 1
v

��
; (18)  

where d2 ½0;1Þ is a scalar damage variable with initial condition d ¼ 0 
and Ct ¼ FT

t Ft. 
From the second law of thermodynamics, the Clausius-Duhem 

inequality for an isothermal process can be written as 

Φ¼ � _Ψþ
1
2

S : _Ct � 0 (19)  

where S is the second Piola-Kirchhoff stress tensor. The rate of free en
ergy then takes the form 

_Ψ¼
∂Ψ
∂Ct

: _Ct þ
∂Ψ
∂Fv

: _Fi þ
∂Ψ
∂d

: _d (20)  

by which the dissipation inequality Eq. (19) reduces to 

Φ¼
�

S � 2ð1 � dÞ
∂Ψeq

∂Ct
� 2ð1 � dÞF� 1

v
∂Ψneq

∂Ce
F� T

v

�

:
1
2

_Ct

� ð1 � dÞ
∂Ψneq

∂Ce
:

∂Ce

∂Fv
: _Fvþ

∂ðΨÞ
∂d

_d� 0;
(21)  

where Ce ¼ F� T
v CF� 1

v . 
By substituting the assumed functional form Eq. (20) into Eq. (19), 

the stress can be split into an equilibrium contribution and a non- 
equilibrium contribution as [34]. 

S ¼ ð1 � dÞ

2

6
6
6
6
6
4

2
∂Ψeq

∂Ct|fflfflffl{zfflfflffl}
Seq

þ 2F� 1
v

∂Ψneq

∂Ce
F� T

v
|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

Sneq

3

7
7
7
7
7
5

: (22) 

The following terms remain in the dissipation inequality 

Φ¼ 2ð1 � dÞCe
∂Ψneq

∂Ce
: Lv

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Φv

þ
∂ðΨÞ
∂d

_d
|fflfflffl{zfflfflffl}

Φd

� 0; (23)  

where Lv is the velocity gradient of the relaxed configuration given by 
Lv ¼ _FvF� 1

v . Here, we assume that Φv and Φd are independently positive. 
To proceed further, we first introduce a viscoelastic damage model for 

the nanoparticle reinforced epoxy composites. The proposed constitutive 
equations can be interpreted as a parallel type rheological model with a 
Maxwell element in parallel with an equilibrium spring as illustrated in 
Fig. 2. As mentioned earlier, the constitutive model consists of three el
ements: (1) A hyperelastic spring, (2) a nonlinear elastic spring, and (3) a 
nonlinear viscoplastic dashpot. Here, we use the generalized neo- 
Hookean model for fiber reinforced composites presented in Eqs. (15) 
and (16) for the equilibrium and non-equilibrium free energy terms as 

Ψeq ¼
1
νF

XN

i¼1
νi

FΨi
eq;

Ψi
eq ¼

1
2

νMXμe
M

h
It1

�
F�itf

�
� 3
i
þ

1
2
νFXμe

Mf
�

Ii
t4

�h
It1

�
F�itf

�
� 3
i

þ
1
2

Xμe
Mg
h
f
�

Ii
t4

�
; νF; ζ

ih
It1 � It1

�
F�itf

�i
;

(24)  

and 

Ψneq ¼
1
νF

XN

i¼1
νi

FΨi
neq þ

1
2
λv

MðJ
e � 1Þ

2

;

Ψi
neq ¼

1
2
νMXμv

M

h
Ie1

�
F�ief

�
� 3
i
þ

1
2
νFXμv

Mf
�

Ii
e4

�h
Ie1

�
F�ief

�
� 3
i

þ
1
2

Xμv
Mg
h
f
�

Ii
e4

�
; νF ; ζ

ih
Ie1 � Ie1

�
F�ief

�i
;

(25)  

where the superscript i denotes the ith family of fibers, μe
M is the shear 

moduli respectively related to the equilibrium response of the polymer 
matrix, and μv

M and λv
M are the Lam�e moduli associated with the non- 

equilibrium response of the matrix. It1 , Ie1 , Je are also defined as 

It1 ¼ J� 2=3
t tr½Ct�; Ii

t4 ¼ J� 2=3
t ai

0 ⋅ Ct ⋅ ai
0;

Ie1 ¼ J� 2=3
e tr½Ce�; Ii

e4
¼ J� 2=3

e ai
0 ⋅ Ce ⋅ ai

0;

Jt ¼ det½Ft�; Ct ¼FT
t Ft;

Je¼ det½Fe�; Ce¼FT
e Fe:

(26) 

In order to take into account the effect of nanoparticles, the moduli 
are multiplied by an amplification factor X, which depends on the 
nonoparticle volume fraction. Following the earlier work of Guth [35], X 
takes a form of X¼ 1þ 2:5νnp þ 14:1ν2

np for rigid nanoparticles, where νp 

represents the nanoparticle volume fraction. 
The total Cauchy stress is thus given by 

Fig. 2. One-dimensional schematic of the constitutive model of a hyperelastic 
spring in parallel with a viscoelastic component that consist of a nonlinear 
elastic spring and a nonlinear viscoplastic dashpot. 
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T ¼ ð1 � dÞ
�
Teq þ Tneq

�
; (27)  

where Teq and Tneq are the portions of the total stress originating from 
the hyperelastic rubbery and the viscoelastic behavior of the material, 
respectively. The stresses are finally expressed as 

Teq¼
2
Jt

XN

i¼1

"
∂Ψi

eq

∂It1
dev

"

Bt

#

þ
∂Ψi

eq

∂Ii
t4

Ii
t4

�

ai
e� ai

e �
1
3

I
�

þ
∂Ψi

eq

∂Ii
t5

�

Ii
t4

�
ai

e�Bt ⋅ ai
eþ ai

e ⋅ Bt � ai
e

�
�

2
3
Ii

t5 I
�#

;

(28)  

and 

Tneq¼
2
Je

XN

i¼1

"
∂Ψi

neq

∂Ie1

dev

"

Be

#

þ
∂Ψi

neq

∂Ii
e4

Ii
e4

�

ai
v� ai

v �
1
3

I
�

þ
∂Ψi

neq

∂Ii
e5

�

Ii
e4

�
ai

v�Be ⋅ ai
vþ ai

v ⋅ Be� ai
v

�
�

2
3
Ii

e5
I
�#

þ
∂Ψneq

∂Je
I;

(29)  

where Bt ¼ FtF
T
t and Be ¼ FeF

T
e are the isochoric left Cauchy–Green 

tensor related to the equilibrium and non-equilibrium responses, 

respectively. ai
v ¼

Feai
0ffiffiffiffiffi

I
i
e4

q ; ai
e ¼

Ftai
0ffiffiffiffi

I
i
t4

q are the current fiber directions asso

ciated with the equilibrium and non-equilibrium responses, respec
tively. I is the second order unit tensor, and ∂Ψi

∂Ij
ðj¼ 1; 4 and 5Þ can be 

calculated as follows: 
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�
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�
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(30) 

In above equations I1¼ It1 ; I
i
4¼ Ii

t4 and Ii
5¼ Ii

t5 
for the equilibrium 

response Teq, and I1¼ Ie1 ; I
i
4¼ Ii

e4
and Ii

5¼ Ii
e5 

for the non-equilibrium 
response Tneq. 

The velocity gradient of the relaxed configuration, Lv ¼ _FvF� 1
v , may 

be represented as the sum of symmetric and skew-symmetric tensors, 

Lv¼Dv þWv; (31)  

where Dv and Wv are the rate of stretching and spin, respectively. The 
rate of spin is taken to be Wv ¼ 0 [36], and the rate of viscoelastic 
stretching is prescribed to be 

Dv ¼
_εv

τneq
dev

h
T’

neq

i
; (32)  

where T’
neq ¼ RT

e TneqRe is the stress acting on the viscoelastic component 
convected to its relaxed configuration. The scalar equivalent stress τneq is 
here taken as the Frobenius norm of the deviatoric part of the driving 
stress τneq ¼ dev ½Tneq�F. _εv in Eq. (32) is the viscoelastic flow rate that is 
defined by the Eyring model [37]. 

_εv
¼ _ε0 exp

��
V�τneq

kΘ

��

; (33)  

where _ε0 and V� are respectively pre-exponential factor and the acti
vation volume. As shown in Ref. [34], the evolution equation presented 
in Eq. (31) satisfies the Clausius-Duhem inequality in Eq. (23) (i.e., 
ϕi � 0). 

From Eq. (1), the time-derivative of _Fv can be obtained as 

_Fv ¼
_εv

τneq
dev

h
T’

neq

i
Fv: (34) 

The evolution of d is assumed to take a simplified form of saturation 
type evolution rule [38,39], which has the form 

_d ¼ Að1 � dÞ _Λmax
chain; (35)  

where A is a parameter that characterizes the evolution of d and 

_Λmax
chain ¼

�
0 Λchain < Λmax

chain
_Λchain Λchain�Λmax

chain
(36)  

and Λchain ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

tr½B�=3
q

is the stretch on each chain. 
The proposed damage evolution model satisfies the Clausius-Duhem 

inequality presented in Eq. (23) (i.e., Φd � 0). 

2.3. Summary of the constitutive model 

The constitutive model is summarized in Table 1, where parameters 
required to fully capture each feature of the material behavior are listed. 

In the next section, we propose simulation-based procedures for 
determining the material parameters of the viscoelastic dashpot and 
hyperelastic spring elements. The procedures provide a methodological 
framework to extract the material parameters required for the consti
tutive model. It is worth noting that the evolution of the nanocomposite 
microstructure due to a quasi-irreversible rearrangement of molecular 
networks during deformation can cause the softening behavior. Most 
softening theories are based on two concepts. The first theory, proposed 
by Blanchard and Parkinson  [40] and Bueche  [41], considers that the 
softening behavior results from the breakage or loosening of 
filler-polymer attachments. The second theory, originated from Mullins 
and coworkers  [32,42], assumes that a quasi-irreversible rearrange
ment of molecular networks due to localized nonaffine deformation 
resulting from short chains reaching the limit of their extensibility. This 
nonaffine deformation produces a displacement of the network junc
tions from their initial state, which causes the rearrangement of 
microstructure and the softening behavior. Here, due to the lack of exact 
information about the morphology of BNP/epoxy nanocomposites at the 
micro-scale and the mechanism of damage evolution in the materials 
subjected to loading, the elastic spring and the damage parameters are 
determined through a calibration process with experimental results. The 
proposed approach to calibrate the constitutive model and the imple
mentation of the model in a FEA are highlighted in Fig. 3. 

Table 1 
Summary of the constitutive model and parameters corresponding to each 
element.  

T ¼ ð1 � dÞ
ðTeq þ TneqÞ

Equilibrium 
response Teq  

Hyperelastic spring 
element 

μhe
M  Eq.  

(28)  

Non-equilibrium 
response Tneq  

Nonlinear spring 
element 

μe
M ;

λe
M  

Eq.  
(29)   

Viscoplastic dashpot 
element 

_ε0 ;V� Eq.  
(33)  

Damage  A Eq.  
(35)  

Fiber parameters  a1;a2;

a3  

Eq.  
(7)  
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In the multiscale analysis of materials, different length and time 
scales are involved, which cause many complexities to couple these 
scales such as size and non-physical effects. Different multiscale 
methods proposed in literature can be generally classified into hierar
chical, semi-concurrent and concurrent methods. Among many others, 
we refer to studies by Ju and Lee [43], Raghavan and Ghosh [44], and 
Rabczuk and his colleagues [45–47]. Here, we propose a hierarchical 
multiscale method, where a numerical homogenization is used to obtain 
the size-independent material properties from simulations of the 
microstructure. Meanwhile, the size-dependent damage variable is 
experimentally identified for specimens at macro-scale, which would 
prevent from the size effect involved in upscaling the material properties 
from the fine-scale to the coarse-scale. 

3. Molecular simulation based parameters identification 

In the following section, a molecular modeling method for simu
lating the cross-linking process of epoxy resins is first presented. It al
lows the construction of realistic atomistic models of cured epoxy resins. 
Next, MD simulations are performed to investigate the material behavior 
of the cured polymer materials subjected to tensile and shear loading. 

3.1. Curing simulation 

The curing simulations are performed for a commercially available 
amine-cured epoxy resin combined of two monomers bisphenol a 
diglycidyl ether and 1,4-butanediol diglycidyl ether with an average 
weight fraction ratio of 85:15 and an average repeating unit of n ¼ 1:265 
for bisphenol a diglycidyl ether. The hardeners comprise a combination 
of poly[oxy(methyl-1,2-ethanediyl)] and cyclohexanemethanamin with 
an average weight fraction ratio of 62.5:37.5. The number of repeating 
units for poly[oxy(methyl-1,2-ethanediyl)] is n ¼ 9:5. The simulations 
are conducted on the standard stoichiometric epoxy monomer/hardener 
ratio of 100:31. The chemical structures of the molecules and the prin
ciple polymerisation reactions associated with the cross-linking process 
are shown in Figs. 4 and 5, respectively. 

The monomer and hardener molecules are firstly generated and 
randomly distributed in a simulation box with the mixing ratio. The total 
number of atoms is 14974 and periodic boundary conditions are applied 
along all directions. An optimized molecule arrangement is generated 
using the open source package PACKMOL [48]. All reactive groups are 
then activated, as shown in Fig. 6, with the black square indicating a 
possible covalent bond to a reaction partner. The epoxy group is broken 
up and the oxygen is hydrated to a hydroxyl group, resulting in an 
reactive methylene group. Both hydrogen atoms of the amine groups are 
removed, resulting in a reactive primary amine. 

The cross-linking simulation procedure is followed under an iso
thermal–isobaric ensemble (NPT) with zero external pressure to allow for 
a sufficient relaxation and to trace the curing-induced volume change: 

Step 1: An initial relaxation for 500 ps under NPT ensemble com
bined with a linear increase of temperature to the curing temperature 
T ¼ 353 K; 
Step 2: Distances between all possible reactions groups are calcu
lated; all reaction distances larger than a chosen cut-off rc ¼ 1 nm for 

Fig. 3. Summary of the proposed viscoelastic damage constitutive model for fiber reinforced BNP/epoxy nanocomposites.  

Fig. 4. Chemical structures of all molecules of the investigated epoxy system: 
(a)–(b) chemical components of epoxy resin monomers, (c)–(d) chemical 
components of hardener molecules. 

Fig. 5. Principle polymerisation reactions: (a) epoxy group with primary 
amine, (b) epoxy group with secondary amine, (c) epoxy group with hydrox
yl group. 
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the reaction distance are discarded and the bond with the smallest 
reaction distance is formed; 
Step 3: Equilibration of the system for a time period of 2.5 ps; 
Step 4: Repeat step 2 and 3 until the final degree of curing of 90%. 

The cross-linking simulations are performed using an in-house code 
[49]. To study interactions associated with epoxy monomers and hard
ener molecules, we use the DREIDING force field [50], which is proven 
to be an appropriate choice for simulations of epoxy systems. The time 
step is set to be 1 fs. The cross-linking algorithm follows the common 
approach to use the distance between two reactive groups as the main 
criterion for an artificial bond formation between the groups. For further 
information, the reader is referred to Unger et al. [51]. 

Fig. 7a shows the time evolution of the degree of curing during the 
cross-linking simulations described in Section 3.1. The simulation re
sults show that the investigated epoxy system is fully cross-linked after a 
reasonable cross-linking time of about 2 ns (i.e., the degree of cross- 
linking is greater than 90%). The relative change of reactive amine 
groups as a function of the degree of curing is also presented in Fig. 7b. 
The increase of tertiary amine groups by increasing the degree of cross- 
linking confirms the artificial carbon-nitrogen bond formation associ
ated with the curing simulations. For further analysis, the radial distri
bution function (RDF) of all nitrogen atoms to all other carbon atoms in 
the polymer network is shown in Fig. 8. The RDF depicts the main peak 
at the equilibrium distance of the carbon-nitrogen bond, proving that 
the system is cross-linked and is at a well equilibrium state. 

The simulations are repeated to generate three cross-linked epoxy 
samples. Next, an NPT simulation at 300 K and 1 bar is conducted for 20 
ns for each sample, and two configurations are extracted for the subse
quent analysis every 5 ns during the last 10 ns of the simulation. Finally, 
six cross-linked epoxy samples are prepared. The average number of 
rigid links between two cross-links represented by N in Eq. (28) is ob
tained to be 2.44 for the cured epoxy resins as presented in Table 2. 

3.2. Modeling of cured epoxy under tensile loading 

Once the cured samples are prepared, they are independently sub
jected to tensile deformations along the x � , y � , and z� directions at 
various strain rates and room temperature T ¼ 298 K. A 40% axial 
tensile strain is applied to the periodic polymer system with zero-valued 

pressures in the lateral directions to allow for the natural Poisson 
contraction. The simulations of the cured epoxy subjected to tensile 
loading enables us to study the rate-dependent viscoelastic behavior of 
the material. The characterization of the viscoelastic flow rate of the 
epoxy resin will be possible through the analysis of the simulation re
sults along with the Eyring model presented in Eq. (33). Based on the 
transition state theory, Eyring [52] showed that the deformation of a 
polymer is a thermally activated process involving the motion of seg
ments of chain molecules over energy barriers. An external applied 
stress or strain allows a molecule rearrangement to an more 
energy-efficient state by providing the necessary energy to overcome the 
energy barrier. The pre-exponential factor and the activation volume 
required in model are then obtained from the resulting Eyring plot. 

A representative stress–strain curve of the cured epoxy system at 
strain rate _ε¼ 1� 108 s� 1 is shown in Fig. 9. The simulation data points 
are fitted by a piecewise cubic spline interpolation with an optimized 
knot. The knot point (1 =Tk) of the bicubic fit is determined by mini
mizing the least square error between the fit and the simulation data. 
The maximum observed on the stress–strain curve, which is the yield 
point, has been marked by an arrow in the figure. The yield point is 
associated with a sudden increase in the amount of strain which relaxes 
the stress. From Fig. 9, the yield stress at the strain rate equal to 1� 108 

s� 1 is calculated to be 282.27 MPa. 
An estimation of the viscoelastic flow rate can be obtained from the 

Eyring plot according to Eq. (33). For this, the deviatoric part of the yield 
stress (dev ½σY �) at multiple strain rates varying from 5� 106 to 5� 108 

s� 1 is calculated. The resulting Eyring plot shown in Fig. 10 suggest a 
linear behavior from which the preexponential factor and the activation 
volume are obtained to be 1:43� 10� 7 s� 1 and 0.79 nm3, respectively. 
The values are listed in Table 2. 

Fig. 6. Activation of (a) epoxy group and (b) amine group. A black square (■) 
indicates a possible covalent bond to a reaction partner. 

Fig. 7. Simulation results of the curing process: (a) Evolution of the degree of curing with simulation time, and (b) the relative change of reactive amine groups as a 
function of the degree of curing. 

Fig. 8. Radial distribution function of all nitrogen atoms to all carbon atoms in 
the system. 

Table 2 
Material parameters predicted by MD simulations.   

Parameter Equation Value 

Viscoelastic dashpot _ε0 (s� 1)  (33) 1:43� 10� 7  

V� (nm3)  (33) 0.79 
Hyperelastic spring μN (MPa)  (28) 205.50 

N (28) 2.44  
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It is noteworthy that polymer network structures are ideally homo
geneous in the simulations, while voids and cavities are created during 
the synthesis process of polymer materials. The presence of voids in 
polymer composites results in reductions in the matrix-dominated me
chanical properties. Therefore, the evolution of damage state measured 
from experimental tests is different with that obtained using MD simu
lations. Therefore, in order to take into account the damage behavior in 
the composite polymers, a phenomenological damage model presented 
in Eq. (35) is considered. The damage model is calibrated using uniaxial 
tensile tests as discussed later. All the simulations are performed with 
the Large-scale Atomic/Molecular Massively Parallel Simulator 
(LAMMPS) [53]. 

3.3. Modeling of cured epoxy under shear loading 

As discussed in Section 2, the connectivity and stretching of the 
polymer network impart the hyperelastic behavior and a generalized 
neo-Hookean model presented in Eq. (28) captures this behavior. Here, 
we present a MD simulation-based method to analyze the long-term 
configuration change of cured epoxy polymer subjected to a shear 
deformation. It allows us to study the stress relaxation behavior of the 
epoxy under a constant strain and to capture the time-independent 
response of the epoxy by which the corresponding time-independent 
shear modulus of the material that is required in Eq. (28) is obtained. 

Shear strains of 1% are initially applied to the cured samples in the 
xy-, yz-, and xz-planes. The simulation box is deformed at a strain rate of 
107 s� 1 and room temperature under NPT ensemble to control normal 
stresses along the x-, y- and z-directions at zero. To study the long-term 
response of the material, we utilized a method similar to that recently 
introduced to simulate an artificial relaxation [54]. In this method, 
starting from the deformed configuration, the system is subjected to 

small cyclic perturbations of tensile/compressive stresses along the x-, y- 
and z-directions �σp around zero pressure, while the shear strain is held 
constant. The cyclic stresses with period 100 ps are applied to the 
polymer system using a series of NPT simulations at room temperature. 
Fig. 11 shows a cyclic tensile/compressive stresses at σp¼ �200 MPa. 
These small perturbations of stresses allow the system to overcome en
ergy barriers to atomic motion in a computationally feasible time scale. 
The shear stress is averaged over a number of the cycles. It is worth 
noting that the relaxation process does not depend on the choice of σp 

[54] since the sum of the cyclic stresses is zero over the cycles. 
Fig. 12a–c presents the variation of the shear modulus with respect to 

the number of stress perturbation cycles applied to three different cured 
epoxy configurations. The simulation results show that although the 
trend of the artificial relaxation varies for different configurations, the 
shear modulus reaches a plateau at μ¼ 205� 30 MPa after up to 2000 of 
the cycles (i.e., 200 ns). The plateau represents the time-independent 
response of epoxy resin under shear loading. A piecewise linear curve 
with two optimal knots is fitted to the simulation data points to estimate 
the shear stress at the relaxed configuration. 

4. Finite element analysis 

Next, we use the constitutive model to develop a continuum me
chanics incremental formulation of nonlinear problems with respect to 
finite element solution variables. It would make it possible to evaluate 
the applicability of the proposed atomistically informed constitutive 
model. In the following section, the continuum mechanics incremental 
and finite element equations are derived. 

4.1. Total Lagrangian formulation 

The motion of a general body is considered in a stationary Cartesian 
coordinate system and the aim is to evaluate the equilibrium positions of 
the body at the discrete time points 0;Δt;2Δt;…; t where Δt is an 
increment in time. The equilibrium of the body at time t þ Δt using the 
principle of virtual displacements is expressed as 
Z

tþΔtV

tþΔtTijδ
tþΔteijd

tþΔtV ¼ tþΔt
R � ; (37)  

where tþΔtTij is the Cauchy stress tensor, tþΔteij is strain tensor corre
sponding to virtual displacement, tþΔtVþΔt is volume at time tþ Δt, and 
tþΔtRþΔt is the external virtual work. 

Eq. (37) cannot be solved directly since the configuration at time t þ
Δt is unknown. A solution to the equation is obtained by referring all 
variables to the initial configuration at time 0 of the body that is called 
the total Lagrangian (TL) formulation. In the formulation, we consider 
the following equilibrium equation for the body in the configuration at 
time tþ Δt 
Z

0V

tþΔt
0 Sijδ

tþΔt
0 εijd0V ¼ tþΔt

R ; (38)  

where 0tþΔtSij is the 2nd Piola-Kirchhoff stress tensor, 0tþΔtεij is the 
Green-Lagrange strain tensor. and the deformation-independent loading 
tþΔtRþΔt is given by 

tþΔt
R ¼

Z

0A

tþΔt
0 f s

i δuid0Aþ
Z

0V

tþΔt
0 f b

i δuid0VR (39) 

The linearized equilibrium equation in the TL formulation is then 
obtained 
Z

0V
0Cijrs0ersδ0eijd

0V þ
Z

0V

t
0Sijδδ0ηijd

0V ¼ tþΔt
R �

Z

0V

t
0Sijδδ0eijd

0V; (40)  

where 0eij and 0ηij are the linear and nonlinear incremental strains which 

Fig. 9. Tensile stress-strain behavior of an cured epoxy system at strain rate _ε ¼
1� 108 s� 1. 

Fig. 10. Strain rate dependence of the yield stress.  
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are referred to the configurations at times 0. 
0Cijrs is the incremental stress-strain tensors at time t referred to the 

configurations at time 0, which is obtained from the constitutive model 
presented in Section 2. However, a closed-form calculation of the tensor 
for the constitutive model is not a straightforward task. Here, we follow 
a numerical perturbation method to derive an approximate tangent 
stiffness matrix [55]. Since the constitutive model uses a TL formulation, 
the derivative of the stress increment function Δσ with respect to the 
strain increment tensor Δε takes the following form 

∂Δσ
∂Δε ffi

δΔσ
δΔε ¼

tþΔtσ
� t

0Fe
;

t
0Fi;

tþΔt
0

~F
�
� tþΔtσ

� t
0Fe;t0Fi; tþΔt

0 F
�

δ
; (41)  

where tþΔt
0

~FþΔt is the perturbated deformation gradient and δ is the size 
of the perturbation. For a three-dimensional analysis, the deformation 
gradient tþΔt

0 FþΔt must be perturbated six times to derive the Jacobian 
matrix. The reader is referred to Ref. [55] for a detailed discussion on the 
numerical approximation of the tangent stiffness matrix. 

4.2. Finite element matrices 

Displacements are then discretized at the element level using uh ¼

Nu, where the shape function matrix N interpolates the nodal values u. 
Substituting the element coordinates and displacement interpolations 
into Eq. (40), the following system of equations for a single element is 
obtained: 

ðt0KLþ
t
0KNLÞu¼

tþΔtR � t
0F; (42)  

where t
0KL and t

0KNL are the linear and nonlinear strain (geometric) 
incremental stiffness matrices, respectively. tþΔtRþΔt is the vector of 
externally applied nodal point loads at time tþ Δt; t

0F is the vector of 
nodal point forces equivalent to the element stresses at time t; and u is 
the vector of increments in the nodal point displacements. The stiffness 
matrices and force vectors are obtained from the finite element evalu
ation as 

t
0KL ¼

Z

0V

t
0BT

L 0C t
0BLd0V; (43)  

t
0KNL ¼

Z

0V

t
0BT

NL
t
0St

0BNLd0V; (44)  

tþΔtR¼
Z

0A

NAT tþΔt
0 fsd0Aþ

Z

0V

NT tþΔt
0 fbd0V; (45)  

tF ¼
Z

0V

t
0BT

L

t

0
bSd0V; (46)  

where t
0BL and t

0BNL are the linear and nonlinear strain-displacement 
transformation matrices, 0C is the incremental material property ma

trix, t0S is a matrix of 2nd Piola-Kirchhoff stresses, and 
t

0
bS is a vector of 

these stresses. All the matrices are defined at time t with respect to the 
configuration at time 0. 

The linearization presented in Eq. (40) introduce errors leading to 
solution instability. It is therefore necessary to iterate in each load step 
until the relative L2-norm of the residual in Eq. (38) is less than a given 
tolerance set as 10� 5. The equilibrium iterations corresponding to a 
modified Newton iteration in the TL formulation is 

ðt0KLþ
t
0KNLÞΔuðiÞ ¼ tþΔtR � tþΔt

0 Fði� 1Þ
:ði¼ 1; 2; 3…Þ (47) 

Fig. 11. Schematic illustration of the cyclic perturbations of tensile/compressive stresses at a constant shear strain (left), and Loading/unloading cycles versus 
time (right). 

Fig. 12. (a)–(c) Shear modulus with respect to the number of loading/ 
unloading cycles at σp ¼ 200 MPa and room temperature. The initial shear 
strain is 0.01. 
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Table 3 summarizes a step-by-step algorithm used to the system of 
non-linear equations presented in Eq. (47). 

5. Results and discussion 

As discussed earlier in sections 2 and 3, the material parameters 
associated with the hyperelastic spring (i.e., μhe

M ) and viscoelastic dashpot 
elements (i.e., _ε0 and V�) are determined using MD simulations. Further 
to the atomistically measured parameters, those of the nonlinear elastic 
spring (i.e., μe

M and λe
M), the damage variable (i.e., A) and the fiber pa

rameters (i.e., a1, a2 and a3) are obtained through a calibration process 
with experimental data. In this study, commercially available spray dried 
BNPs with a primary particle size of 14 nm (DISPERAL HP14, SASOL 
[56]) and GFs with an average diameter and length of 11.5 and 350 μm 
(FG 300 [57]) are used, respectively. The mass density of the neat epoxy, 
BNP and GF are respectively 1.2, 3.0 and 2.55 g/cc from which the BNP 
and GF volume fractions required in the constitutive model can be ob
tained. Nanoparticles have a tendency to undergo agglomeration. The 
aggregation of nanoparticles results in insufficient dispersal in the 
polymer matrix, degrading the material properties of the nano
composites. To reduce the particle agglomeration by shear mixing pro
cess, BNPs are dispersed in the epoxy using a high-energy vacuum 
dissolver at an extremely high rotation speed of 5800 rpm. The dissolver 
provides high shear forces to break up the agglomerates in the liquid 
epoxy in vacuum. The GFs are dispersed in the epoxy with a moderate 
rotation speed in order to avoid breakage of the fibers. The nano
composites are prepared by firstly dispersing the required amount of 
BNPs in the liquid epoxy and by subsequent introduction of the fibers in 
the BNP-filled epoxy compound. Afterwards, the compound is blended 
with the curing agents. Finally, the material is cast in a preheated (80 C) 
casting tool (depending on the test method, a size of nearly DIN A4 with 
thicknesses between 2 and 5 mm) and cured for 4 h at 80 C for gelation 
and 4 h at 120 C for post-curing. The casting tool is made of stainless steel 

and to provide an easy release a water-based mold release system is used. 
GFs are in-plane randomly-oriented, which are represented by two 

families of fibers with the initial fiber directions of a1
0 ¼ ½ 1 0 0 � and 

a2
0 ¼ ½0 1 0 �. In the following section, the constitutive model is first 

calibrated based on a comparison with tensile test results of neat epoxy, 
BNP/epoxy nanocomposites and GF/epoxy composites. The predictive 
capabilities of the calibrated model to predict the stress-strain response 
of GF reinforced BNP/epoxy nanocomposites is then validated by 
experimental data. Next, the model is implemented in the FEA and is 
validated by comparing the numerical and experimental results of a 
four-point bending test. 

5.1. Experimental parameters identification 

The objective of this section is to identify the aforementioned ma
terial parameters using experimental data obtained from uniaxial tensile 
tests. Concerning the tensile tests, specimens with a thickness of 2.2 mm 
are produced and tested according to testing standard DIN EN ISO 527- 
2, using an extensometer to measure the elongation of samples (Fig. 13). 
The specifications of the specimens are highlighted in Fig. 14. The stress- 
strain curves are recorded with a test speed of 2 mm/min. 

To calibrate the material parameters, the stress-strain relationships 
of three types of specimens made of neat epoxy, BNP (20 wt%)/epoxy 
nanocomposites and GF (60 wt%)/epoxy composites obtained from the 
constitutive model is compared with those of experimental data. An 
object function of differences between model results and experimental 
data is numerically minimized using the single-objective genetic algo
rithm method available in the DAKOTA software package [58]. The 
experimentally identified parameters of the constitutive model are listed 
in Table 4. These parameters are obtained with ten experimental tests at 
engineering strain rate _ε¼ 2:90� 10� 4 s� 1 and room temperature. 

Based on the material parameters presented in Tables 2 and 4, the 
stress-strain relationship can be obtained from equations presented in 
section 2. Fig. 15 presents the model predictions for neat epoxy, BNP 
(20 wt%)/epoxy nanocomposites and GF (60 wt%)/epoxy composites 
compared with experimental data. The mean values and standard de
viations of the data calculated from ten uniaxial tensile tests are shown 
in the figure. The simulation results show that the proposed constitutive 
model is able to fairly predict the stress-strain behavior of nanoparticle 
and fiber reinforced epoxy. 

It should be noted that the parameters identification procedure 
adopted here aims to provide a unique set of material parameters for GF 
reinforced BNP/epoxy nanocomposites. The predictive capability of the 
constitutive model with the unique set of parameters is further evaluated 
in the next section. 

Table 3 
Summary of step-by-step algorithm used for FE analysis.  

1. The value of tensors ft
0F;t0Fe;

t
0Fv;

tþΔt
0 FþΔtg is available at the beginning of each 

time increment.  
2. Calculate the trial elastic deformation gradient using Eq. (1) 
tþΔt
0 Ftrial

e ¼ tþΔt
0 FþΔtt0F� 1

v .  
3. Perform the polar decomposition 
tþΔt
0 Ftrial

e ¼ tþΔt
0 Vtrial

e
tþΔt
0 Rtrial

e .  
4. Compute the trial elastic strain 
tþΔt
0 Etrial

e ¼
P3

i¼1ðln λðiÞtrialÞe
ðiÞ
trial � eðiÞtrial,  

where λðiÞtrial and eðiÞtrial are the eigenvalues and eigenvectors of tþΔt
0 Vtrial

e .  

5. Calculate the trail stress tþΔtTtrial
neq 6 using Eq. (29).  

6. Calculate the deviatoric part of tþΔtTtrial
neq .  

7. Calculate the trial viscoelastic flow rate _εv
trial using Eq. (33).  

8. Calculate the trial viscoelastic stretching Dtrial
v from Eq. (32).  

9. Update tþΔt
0 Fv using the backward Euler method and Eq. (34)  

tþΔt
0 Fi ¼

t
0Fi þ ΔtDtrial

i
tþΔt
0 Ftrial

i ,  

where Δt is the time increment and tþΔt
0 Ftrial

i ¼ ðtþΔt
0 Ftrial

e Þ
� 1 tþΔt

0 FþΔt.  

10. If 
�
�
�
�tþΔt
0 Fv �

tþΔt
0 Ftrial

i

�
�
�
� < tolerance then GOTO step 11 else GOTO step 2.  

11. Calculate tþΔt
0 Teq using Eq. (28).  

12. Calculate the damage variable at t þ Δt using Eq. (35).  

13. With tþΔt
0 Tqe, 

tþΔt
0 Tnqe and d obtained in previous steps calculate the total stress 

using Eq. (27).  

14. Store tþΔt
0 Fe and tþΔt

0 Fi and report the total stress tþΔt
0 TþΔt.  

15. Compute of the tangent stiffness matrix using Eq. (41). 
16. Solve the system of non-linear equations presented in Eq. (47) using the Newton- 

Raphson procedure. 
The state of damage and the tangent stiffness matrix are updated at each Newton- 

Raphson iteration.  Fig. 13. Experimental setup for tensile test of the nanocomposite specimens 
with extensometer to measure the elongation of the samples. 
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5.2. Model validation 

The second investigation here considered deals with a series of 
uniaxial tensile tests of GF reinforced BNP/epoxy nanocomposites. It 
allows us to evaluate the model performance in predicting the stress- 
strain relationship of the nanocomposites in the simultaneous presence 
of GF and BNP reinforcements with the calibrated material parameters 
listed in Tables 4 and 2 

Fig. 16 shows the effect of GF and BNP weight fractions on the stress- 
strain behavior at _ε¼ 1:54� 10� 4 s� 1 and room temperature under 
uniaxial tensile loading. Both experimental and numerical results are 
presented in the figure. From the experimental data, the Young’s 
modulus increases from 2.95 to 4.10 GPa for neat epoxy and BNP (20 % 
wt)/epoxy nanocomposites, respectively. The Young’s modulus respec
tively increases to 4.75, 5.25 and 7.07 GPa by increasing the GF weight 
fraction from 15 to 30 and 60 wt%, indicating percentage increases of 
61, 78 and 140%, respectively. The results show that the ductile 
behavior of the nanocomposites significantly affected by the fibers such 
that the critical strain decreases from 0.06 for neat polymer to 0.01 for 
GF (60 %wt)/epoxy composite. From Fig. 16, an overall satisfactory 
level of accuracy between the proposed model and the experimental 

data can be observed, evidencing the practicability and representative
ness of the developed constitutive model at different GF and BNP weight 
fractions. There are some discrepancies between the model prediction 
and experimental data, which might be caused by the unique set of 
material parameters and the free energy terms defined in Eqs. (24) and 
(25). Fig. 17 shows the evolution of the damage variable d during this 
deformation course for the neat epoxy material, showing a mono
tonically increasing trend with strain. 

5.3. Application of the proposed model 

Finally, a four-point bending test of a beam made of GF reinforced 
BNP/epoxy nanocomposites is analyzed to examine the predictive 
capability of the developed constitutive model in a real application. The 
bending tests are performed according to DIN EN ISO 14125 at a 

Fig. 14. Planar dimensions of the specimens with a thickness of 2 mm used for tensile tests. All dimensions are in millimeters.  

Table 4 
Material parameters identified by experimental tests.  

Parameter Equation Value 

μe
M (MPa)  (29) 810 

λe
M (MPa)  (29) 1100 

A (35) 200 
a1  (35) 9 
a2  (35) 1 
a3  (35) 1  

Fig. 15. Stress-strain curves of reinforced epoxy resin at strain rate _ε¼ 1:54�
10� 4 s� 1 and room temperature under uniaxial tensile loading. The mean values 
and standard deviations of the experimental data are obtained from ten uni
axial tests. 

Fig. 16. Effect of GF and BNP weight fraction on the stress-strain relationship 
of the nanocomposites at strain rate _ε¼ 1:54� 10� 4 s� 1 and room temperature 
under uniaxial tensile loading. The mean values and standard deviations of the 
experimental data are obtained from ten uniaxial tests. 

Fig. 17. Evolution of the softening variable d with strain for the neat epoxy.  
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constant speed of 2 mm/min and an initial load of 5 N, while load and 
displacement are recorded (see Fig. 18). The specifications of the spec
imens tested in the investigation are illustrated in Fig. 19a. The width of 
the specimens is 10.1 mm. 

Due to the specimen symmetry, a FEA of half of the beam using 
symmetric boundary conditions would provide as complete a solution as 
that of the full model with less computational cost. The reduced model 
takes into account the symmetry at the mid-length of the specimen as 
illustrated in Fig. 19b. Fig. 20 shows the corresponding finite element 
mesh with 1187 nodes and 1064 four-noded quadrilateral (Q4) ele
ments. The mesh is refined toward the right side of the model because of 
high stress and strain concentrations in the area. The following simu
lations are performed under plane strain conditions and the load is 
applied via an imposed displacement at a constant rate of 2 mm/min. 

Fig. 21 shows the numerical predictions of the four-point bending 
tests of samples made of neat epoxy and different combinations of the GF 
and BNP weight fraction. The numerical results are compared with 
experimental data. The mean values and standard deviations of the data 
calculated from ten four-point bending tests are presented in the figure. 
From the resulting force-displacement curves, it can be seen that the 
flexural resistance increases by incorporating the GF and BNP content in 
the epoxy matrix. 

The flexural modulus can be calculated from the linear portion of the 
curves by determining the load F and its corresponding displacement 
d as Ef ¼

23
108

FL3

wt3d, where L, w and t are the loading span, the width and 
thickness of the specimen, respectively. The numerical results indicate 
that the flexural modulus increases from 3.61 GPa for neat epoxy to 
5.32 GPa for BNP(20 wt%)/epoxy, showing a percentage increase of 
47%. The flexural modulus further increases to 7.28 and 9.67 GPa by 
increasing the GF weight fraction to 15 and 60 wt%, respectively. The 
numerical results are consistent with experimental data. The resulting 
force-displacement curves clearly indicate a satisfactory level of agree
ment along the whole evolution, which again evidences the ability of the 
proposed constitutive model in predicting the rate-dependent behavior 
of GF reinforced BNP/epoxy nanocomposites. 

Finally, Fig. 22 shows the evolution of the damaged zone. Fig.. 22a 
and b correspond to imposed displacements of 3.0 and 4.0 mm, 
respectively. It is worth noting that the material softening is modeled 
using damage variables. Beyond the onset of softening, strain localiza
tion happens in the classical continuum damage model, which leads to 
the loss of solution uniqueness [59,60]. Consequently, the numerical 
solution obtained from the FEA will be mesh-dependent. To avoid the 
well-known problem, we only continue the finite element solutions 
before the onset of stress softening at Gauss points. 

Fig. 18. Experimental setup for four-point bending test.  

Fig. 19. Four-point bending test: (a) geometry of the specimen and boundary 
conditions, (b) loading and boundary conditions imposed on half of the beam 
because of symmetry. The specimen thickness is 10.1 mm. All dimensions are in 
millimeters. 

Fig. 20. Two-dimensional finite element model composed of 1064 Q4 elements 
with 1187 nodes. 

Fig. 21. Effect of the GF and BNP weight fraction on the force-displacement response in the four-point bending test of the nanocomposites.  
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6. Summary and conclusions 

A physically based constitutive model accounting for the nonlinear 
hyperelastic, time-dependent and softening behavior of GF reinforced 
BNP/epoxy nanocomposites at finite strain was proposed. The model 
adopts a composite-based hyperelastic model and a modulus enhance
ment model to take into account the effect of the fiber and nanoparticle 
weight fraction on the stress-strain relationship. The softening behavior 
was modeled by an internal variable, which is assumed to obey a satu
ration type evolution rule. 

A methodological framework based on MD simulations and experi
mental tests was developed to calibrate the proposed model. For this, 
MD simulations were performed to investigate the rate-independent 
equilibrium and rate-dependent viscoelastic material behavior of 
epoxy resins. Molecular simulations of epoxy resins under tensile 
loading at various strain rates allowed the identification of viscoelastic 
material parameters (i.e., _ε0 and V�) required for the Eyring model. A 
MD simulation-based method was also presented to study the equilib
rium response of epoxy resin subjected to shear loading. It enabled 
predicting the hyperelastic material parameters (i.e., μhe

M ). Further to the 
atomistically predicted parameters, uniaxial tensile tests of GF and BNP 
reinforced epoxy were conducted to identify the elastic spring and 
softening and fiber parameters (i.e., μe

M; λ
e
M;A; a1; a2 and a3). 

The predictive capability of the constitutive model with the unique 
set of parameters for different fiber and nanoparticle contents was 
evaluated. The comparison of simulation results of uniaxial tensile tests 
at room temperature with experimental data confirms that the model is 
able to adequately capture the overall material behavior of GF rein
forced BNP/epoxy nanocomposites. The applicability of the model was 
demonstrated through its implementation in the FEA of four-point 
bending tests. Experimental-numerical validation showed a satisfac
tory level of accuracy along the loading evolutions. 

It is worth noting that the proposed constitutive model predicts the 
stress-strain relationships at room temperature. In the future, it would 
be interesting to study the effect of temperature on the material behavior 
of the nanocomposites. The potential development would provide a 
more comprehensive model to better understand the thermoviscoelastic 
behavior of the nanocomposites. Furthermore, more experimental tests 
than those reported in this study are still required to see if the present 
model can predict the hysteresis behavior under cyclic loading. Finally, 
the present modeling framework can be equipped with coarse-grained 
force fields [61,62] to allow simulations of polymer systems at larger 
length and time scales. 
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