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ABSTRACT

A cast-in-place process is usually adopted to peep&continuous composites which
display good mechanical properties and excellemyprehensive performanc&ut the
construction of an intercommunicating porous skeleteems to be cumbersome and low
efficient. Here we report a three-dimensional ndress foam (3D NFF), which has been
fabricated and applied to enhance epoxy resin ceitgpoThe 3D NFF skeletons with
densities from 0.028 to 0.218 g/twere fabricated by regulating the conditions foe t
nanofiber growth. The 3D NFFs were conveniently ifed with a silane coupling agent
to improve the interface interaction with the epoxatrix. Compared to the pure epoxy, the
compressive strength of the cast-in-place procesd@dNFFs/epoxy composite was
improved by 436.8% at loading of 3.9 wt%, and tlexdral strength was increased by

133.5% at loading of 5.3 wt%. While the compressared flexural strength of the
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NFPs/epoxy composite prepared through traditionading method was increased by

173.6% at loading of 3.9 wt%, and 63.1% at loadin§.3 wt%, respectively.

*corresponding author.

E-mail addresgiangman1021@switu.edu.cn (M.Jiang),zwzhou@swijtu.edu.cn (Z. Zhou)

Keywords: Three-dimensional nanofibers foam, Cast-in-place process, Epoxy composites,
Mechanical properties
1. Introduction

Epoxy resin is an ideal thermosetting polymer fa tlevelopment of new composites
for building and structural materials, owing toith@gh tensile, compressive, and flexural
strengths, and resistance to chemicaits,While, the cured epoxy resins with a high cross-
linking density leads to an adverse brittle propevthich causes absorb relatively little
energy before fracture and thus weaken their mechlaperformance [1]. Nanoparticles
are broadly adopted to improve the mechanical gthrenof epoxy,e.g., carbon nanotubes
(CNTs), graphene oxide (GO), metallic oxide and atdays, which are commonly
introduced into the epoxy resin by solution miximgthod [2-8]. The nanopatrticles tend to
agglomerate in the as-prepared composite for tgh hBspect ratio and Van der Waals
force, which decreases the load transfer efficiemtythe interface [9]. Even the
homogeneous dispersion of nanoparticles might gésagerate during the curing process
of epoxy [10]. Lots of research works have beemi@arout for solving the distribution of
nano-carbon fillers in the epoxy resin by chemicailctionality, high-speed shear mixing,
and applying ultrasound waves [11-13]. However, etimmes, the enhancement effect lost
due to the damaged microstructure of the carbderdilby the modification process or by

the high-speed shearing and ultrasound whveas been studied that the tensile strength of
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MWCNTs/epoxy composites incremented to 17.5% bdlien that of the neat epoxy with
sonication assisted dispersion [12]. Likewise, otlséudies showed that the epoxy
composites containing 0.3 wt% of MWCNTSs graftedhw@mine group exhibited 154%
improvement in the flexural strength compared te tieat epoxy [14]. As to our work
before, the helical carbon nanotubes were excettemnprove the flexural toughness of
epoxy composites compared to the straight MWCNTs tb the better mechanical
intertwining from the helical shape of the carb@maotubes [15].

Recently, 3D skeleton nanofibers enhanced compbagedrawn much attention, for it
can reduce the agglomeration of the nanofilletim polymer matrix, ensuring most of the
stress being transferred throughout the 3D filleleton [16-19]. Besides, materials with
porous structure provide an opportunity for thesdirinfiltration of low viscous epoxy to
fabricate epoxy-based composites, which makes #wsily penetrate into the 3D porous
structures [20-22]. To improve the interfacial pedy is crucial for such 3D fibers
skeletons enhanced epoxy composites [16, 17, 2372td chemical oxidation [26] and
coupling agents treatment [27] have been extensieglorted to be efficient to enhance the
interfacial property of the nanofiber enhanced pwy composites. It is reasonably
expected that the aggregation of the nanopartickdsich usually causes property
deterioration[28], can be avoided by using threaatisional nanofibers foam (3D NFF) to
enhance epoxy composites, other than homogenoudi®n of nanofibers (NFs) in the

epoxy matrix.

In this work, three-dimensional nanofibers foam (RIBF) with tunable density was
prepared by an in-situ growth method. The 3D NFB @plied to fabricate a novel epoxy

nanocomposite through a cast-in-place process. Aicpiar emphasis was on the
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compressive and flexural strength of the epoxy amsiips with the density variation of the
as-prepared 3D NFFs enhancement. Furthermore, derstand the strengthening and
toughening mechanism of the 3D NFFs/epoxy compgsipared with the cast-in-place
method, the NFP/epoxy composite prepared througgtitibpnal mixing process was taken
for the comparison.

2. Experimental

2.1. Materials

Diglycidyl ether of bisphenol F (EPON 862) andingragent diethyltoluenediamine
(DETDA) were provided by Dongguan Qiancheng pléatig materials Co., Ltd,
Guangdong, China. The nanofibers powder with a dianof 300490 nm and the length
of 10—40um were synthesized by a directly in-situ growth moeit[29]. Concentrated nitric
acid (HNG;, 63 wt%) and glycidoxypropyltrimethoxysilane (KHBH6were acquired from
Chengdu Kelong Chemicals Factory Co. Ltd, Chen@ithina
2.2. Preparation and modification of nanofibers foam (NFFs)

The 3D nanofibers foam (NFFs) was prepared viarecty in-situ growth process,
using in-situ reduced copper nanoparticles fromricupartrate precursor [30]. By
controlling the concentrations of cupric tartrateni 0.015 to 0.066 g inside the ceramic
boat before the growth process, we can obtain 3wfilzers foam (NFFs) with different
densities. The cupric tartrate was heated to 26@0f@5 min in the furnace in an Argon
atmosphere to produce metallic copper nanoparticld®en, acetylene @El,) was
introduced into the furnace to proceed with a diyao-situ growth process at 260 °C for 2
h to form 3D NFFs [30]. After being prepared, 8i2 NFF sample was cut into the desired

shape for the epoxy composites process. To impttoweénterface interaction between the
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3D NFF and epoxy resin matrix, the pristine 3D NkFge acidified by being immersed
into dilute HNQ aqueous solution, and then functionalized witlitdilKH560 solution in
water and ethanol mixed solvent for 2 h at pH of 4.5
2.3. Preparation of the 3D nanofibers foam/epoxy composites

The 3D nanofibers foam/epoxy composites were pegphy the cast-in-place process.
The content of the 3D NFF in the epoxy matrix wased by using the as prepared 3D
NFFs with different densities, which are summarizedable 1. Typical procedure for the
composite preparation is that the epoxy resin (L@dg curing agent (26.4g) were firstly
mixed under mechanical stirring. Then the mixturéhe epoxy resin and curing agent is
impregnated into the 3D NFF under vacuum at 707 kept for 24 h. The resulted
composite was cured in an oven at 120 °C for dnkl, 170°C for 4 h in sequence[31], as
shown in Fig. 1. The completely cured compositeseweut into standard shapes for
compressive and flexural properties measuremerite. 3D NFFs were crushed into
powder (NFPs) to prepare the NFPs/epoxy composhe. certain amount of NFPs was
dispersed in the epoxy with a traditional high shesxing (3500 rpm for 5 min). The
NFPs/epoxy composites were prepared using the dasting (Table 1) and curing
condition that were adopted for the NFF/epoxy cosites. The pore structure of the as
prepared 3D NFFs were characterized by mercuryusidn porosimetry (MIP,

Quantachrome InstrumentsPoreMaster 33 USA) method as reported [32].

Table 1. The characteristics of the as prepared nanofiber fqQRES)

Sample Average pore Total pore volume Specific surface Density
diameter (ml/g) area (g/cnt)
(mm) (m?/g)

1 3.0830 18.8693 24.4820 0.028 +0.0008
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2 0.0707 8.6141 48.7390 0.060 +0.0040

3 0.5769 9.4209 65.3250 0.080 +0.0035
4 1.3860 8.4555 24.3959 0.110 +0.0046
5 0.2714 2.3547 34.6705 0.218 +0.0065

Vacuum oven

Epoxy solution

3D NFF

=

Fig.1 The schematic representation of the cast-in-ghaseess for preparation of the 3D

Removing air
bubbles

——— 1:] {—
Curing

Air bubbles

P
3D NFF/epoxy

NFFs/epoxy composite.
2.4. Characterization and Testing

Field-emission scanning electron microscopy (FE-SHEOL, JSM-7001F) (Peabody,
MA, USA) was applied to study the morphology of BIBFs and the fracture surface of 3D
NFFs/epoxy composites. The dispersion of the NFRASFPs in epoxy was detected with
an optical microscope (LEICA, Wetzlar, Germany).eTNFPs/Epoxy mixture before
curing was dropped on the glass microscope slidmf@stigation with optical microscope.

The NFFs/Epoxy was cut into slide with 0.2 mm iitkhess before curing for observation
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with optical microscope. The Porosity parameter8@fnanofibers foam (3D NFFs) were

tested by mercury porosimetry (Quantachrome Ingnimy PoreMaster 33 USA).

The chemical structure of the pristine NFFs and ditene functionalized nanofibers
foam were characterized by Fourier transform imfdaspectrometer (FTIR Nicolet 5700,
Waltham, MA, USA). X-ray photoelectron spectroscof$PS) was utilized to further
examining the surface chemical properties of thefibers foam, using an Escalab 250Xi
spectrometer (Thermo Fisher Scientific, Waltham, ,NUSA) with a standard Al K X-ray
source (200 W) and the energy of 30 eV.

The surface energy and thermodynamic property efri@inofibers were measured by
determining the contact angles that were testeagusie shape analysis system, DSA 100
(KRUSS, Germany) at 23°. The contact angles foh sacnple were measured five times to
calculate the average value.

Compressive and flexural properties were tested aniversal testing machine (PWS-
100, China) and (CMT4304, SUST, Sansitaijie, Guangd China) at a cross head speed
of 2 mm/min, following the standard methods (GB 141-2008 and GB1449-2005,
respectively). The measurements were conductedaat kix times; all the samples were
tested at 23°.

3. Resultsand discussion
3.1. Morphology and structure analysis of the 3D foam skeleton of nanofibers

With a typical synthesis process of the 3D NFFs,dbpper (Il) tartrate was applied as
the catalyst precursor being transferred into #eetion tube, and then the acetylene was
inducted into the tube for the catalyzed growtlhef 3D skeleton of nanofibers. As shown
in Fig. 2, the optical photo of the original 3D kken of nanofibersvas observed from the
Camera lens (Fig. 2a), and the morphology of unfretliand modified 3D NFFs were
characterized by a scanning electron microscope @8 and 2c). As it can be seen in Fig.



137
138
139
140
141
142
143
144

145

146

147

2a, the 3D nanofibers foam with regular and homegaa shape was obtained by a directly
in-situ growth method. The surface structure of 3BeNFFs is primarily clear and porous.
After the silane coupling agent modification, therphology of the 3D nanofibers foam
was not changed obviously. The dilute aqueous saidtion and the sequentially silane
coupling agent treatment can help maintain the hmaggy of the nanofibers [5, 6]. The as
obtained 3D NFF showed excellent flexibility progefor it can be wrapped around the

stirring rod, as shown in Fig. 2(a).

Fig. 2. Optical photos and the morphology of the 3D fo&edeton composed of nanofibers
(3D NFFs). (a) The optical photos of the 3D NFFaveing excellent flexibility property, (b)

SEM imagines of the as-prepared, and (c) the cogp@lgent KH560 treated 3D NFFs.
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For comparing the chemical structure of the NFFR®reeand after modification, the
FTIR spectra of the as-prepared NFFs, oxidized Ndfigessilanized NFFs are displayed in
Fig. 3. The peak at 3448 chdenotes the stretching vibrations of hydroxyl g®-OH),
which is in agreement with the mechanism of polyjeae oxidation [30]. The peaks at
2925, 2960, and 1452¢hare attributed to the C-H vibration in -CHhe peak of C=C in
the carbon backbone of fiber is seen at 1634*cmand the methane group (C-H)
deformation adsorption in the methyl group Fkt 1376 crit. As to the oxidized NFFs,
the new peak appears at 1718 tnmaccording to the carbonyl group (C=0) stretching
vibrations of the (— COOH) [35]. The peaks of tlaebonyl group (C-O) show at 1553 Tm
caused by the alcohol compositions on the carbowfri@ers surface. For the silanized
NFFs, the new peaks of Si-C, Si-O-C, and Si-O-Beapat 1272, 1088, and 803 ¢m
respectively. A C-H peak from the glycidoxypropwyitethoxysilane molecules was also
detected at 870 crh The results approve that the silane molecules sarecessful

covalently bonded to the nanofibers.
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Fig. 3. FTIR spectra of the nanofibers before and attectionalization. (a) Pristine
nanofibers (P-NFs), (b) oxidized nanofibers (A-NRs)d (c) silanized nanofibers (K-NFs).
To identify the fundamental compositions on thefaee of the NFFs, the XPS spectra
are displayed in Fig. 4a. As demonstrated in Fag.carbon (C1s) and oxygen (O1s) peaks
can see in every spectrum. In comparison with tREd\ the densities of O1s peaks of the
functionalized were significantly higher, seemedindicate that oxygen groups were
introduced by the acid oxidation and the silaneptiog agent modification. Also, there
were two small Si 2s and Si 2p peaks showed irsgieetrum of silanized NFFs, which
proved that the covalent linkage formed betweenkiH&60 molecules and the surface of
the oxidized NFFs. Moreover, to investigate theneical elements of the pure and
modified NFFs, a more detailed analysis of the @dak is carried out, and the results were

demonstrated in Fig. 4b—e. For the nanofibers f@dRFs), the Cls peak can be separated
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into five fitting curves created from sp3 carboreménts, sp2 carbon elements, in
proportion to the C=0, C-H and C-O, respectivelsonk the spectrum of the acidified
nanofibers (NFFs) sample, the two peakisowed at 288.6 and 286.7 eV, which
corresponded to O=C-0O and C-O-C, respectivelyrdsgnted that the carboxyl groups
(HO-C=0) were chemically attached to the surfacehef oxidized NFFs (Fig. 4c). As
shown in the spectrum of silanized NFFs (Fig. /d a), the peaks at 283.3, 103.5, 102.3
and 101.5 eV were attributed to Si-&};-O, Si—-O-C and Si—O-Si, respectivdtywas then
reasonably explained the chemical interaction cam fbetween the 3D foam skeleton and

the epoxy, due to the coupling agent modificatibthe 3D NFFs.
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183  Fig. 4. X-ray photoelectron spectroscopy (XPS) of the fiaecs. (a) XPS survey spectrum
184  of pristine nanofibers (P-NFs), oxidized nanofibksNFs) and silanized nanofibers (K-
185  NFs). High-resolution XPS C1s spectra of (b) P-NEsA-NFs and (d) K-NFs. (e) High-

186  resolution XPS Si 2p spectra of the K-NFs.



187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

3.2. Surface energy and wettability of the as-prepared nanofibers foam

The contact angle measurement of the nanofibemndoa widely recognized as a
crucial parameter to identify the wettability andface free energy. The NFFs surface free
energy is calculated by using the contact angleghieee liquids, e.g., deionized water,
ethylene glycol, and epoxy resin. The contact angfethese three kinds of liquids on the
3D foam surface were directly measured with theodoom at the point of contact with the
surface.

The relationship between the surface energy andctmact angle is express by
Young’'s formula, which shows the state for equilior at the solid-liquid interfacas
given in Eqg. (1).In assuming the surface energy of material is caagof a dispersion

part and a polar part, it is determined by Eq. [, 38].

P+ cos8) =2 [y yit+2 v o )

vs =v§ +v5 (2)
wherey, is the surface tension of liqui@;is the contact angle between the two kinds ofidieir
interaction,ys is a surface free energy of solid, d and p measgedsion and polar component,
respectively. The wetting liquids used were epa@sirm (y{: 41.20 mN/my?: 5.0 mN/m,y.: 46.20
mN/m), ethylene glycoly{: 31.0 mN/my?: 16.70 mN/m,y.: 47.70 mN/m). Contact angles were
applied to calculate the surface energies [38, BBg surface energy and the contact angle of
the 3D NFFs were tested to analyze the interfaopesties between epoxy and the 3D
NFFs, as summarized in Table 2.

It is seen that with KH560 modification, the swdaenergy of NFFs rise from 42.48

44.47mN/m, and the increment arises from the growthhe polar functional groups
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covalently bonded with nanofibers (from 7.20 to840mJ/m) that occurred through the
oxidation of surface NFFs.

Table 2. Contact angle and surface energy analysis of@io fibers foam

Sample contact angle (°) Surface energy
(mJ/nf)
Watel Ethylene glycc  Epoxy Ys ]/éi Vsp Y12
Pristine NFFs 146.045 32.04 29.7+442.48 3528 7.20 0.82
Silanized NFFs 47.8+2 22.9+3 21.0£544.47 33.87 10.84 2.63

As seen from the results included in Table 2, aftedification with silane coupling

agent, the epoxy contact angle decrease fromi28%#to 21.0-5°, which was not obvious

compared with water and ethylene glycol. Howevke, surface energy of the 3D NFFs
increased considerably from 0.82 to 2.63 niJafter the modification, which presented
more active sites of unsaturated valence bonds werduced to improve the interface
properties of the modified 3D NFF and epoxy.

It was predicted that the surface free energy Haged a key role in enhancing the interface
interaction between the epoxy resin and the sighFFs, which is in accordance with the reports
[38, 40].The silane coupling agent efficiently increased gheface energy of the 3D NFF due to
the enhancement of polar groups, which was in @ecme with the FTIR (Fig. 3) and XPS (Fig. 4)
results. According to the existence of the Si—-G8iC and Si—O-Si functional group on the NFF
surface, chemical interaction could form betweenrthAnofibers and the epoxy matf85, 36, 38].
Thus the improvement is a consideration of newbated active groups on the surface of
the silanized NFFs, which include oxides and sdaskements, as proved by the FTIR

spectra and XPS examines (Fig. 3 and 4). Basedhensurface energy analysis, the
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interfacial tension between the solid and liquiesh dee calculated through the harmonic-
mean equation and geometric-mean equation, as simokan (3).

The harmonic-mean equation:

Y{i Yg Vf ng ] (3)
yi+vd Ty

Yiz=V1+Vv2— 4]
wherey;,is theinterfacial tension of the epoxy with fibers. Sugmipts (d and p) refer to
the London dispersive and specific components,esgely. The calculated interfacial
tension of nanofibers before and after functioraian are shown in Table 2.

It was observed that the interfacial tension of gsh@nized NFFs demonstrated a high-
value of adhesion strengths better than the oflidiifrdes. The results of interfacial energy
were consistent with the morphological analysisSiBM images (Fig. S3, Supplementary
Information).

In the following work, both the nanofiber particl¢dFPs) and the 3D nanofibers foam
(NFFs) were surface functionalized to comparabiydgtthe effect of cast-in-place and
direct mixing processes on the performance of ffuxy nanocomposite.

3.3. Comparisons of the cast-in-place with direct mixing processed composites

The mechanisms for strengthening and toughenintpeof3D NFFs/epoxy composites
prepared by the cast-in-place method were compaitecthe traditional filling process for
better understanding the mechanical performancéh@fcomposites. We compared the
mechanical properties of the composites by varttegfibre percentage (0.0, 1.8, 3.9, 5.3,
7.0 and 16.4% in weight) of the NFP or 3D NFFs. sh®wn in Fig. 5, the 3D NFFs
reinforced composites showed higher compressivepemties compared to the
NFPs/composites. In comparison with the pure epthg/,compressive strength and strain

of the epoxy composite with fiber loading 3.9 wt%empared by the traditional mixing
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process were increased from 104.0 MPa and 61.6284&% MPa and 80.9%, respectively.
While the 3D NFFs prepared by the cast-in-placegss, the corresponding values were
increased to 558.3 MPa and 115.4#th the same fiber loadings (3.9 wt%), showingrig.

5b. The cast-in-place process uses to eliminateceras about the formation of
agglomeration of nanofibers, which usually actstesss concentrators and potential failure
sites in the epoxy. Besides, the modified 3D ndeosé have a network in vertical and
horizontal directions in 3D nanofibers foams tlui can provide strength on all sides and
provides pathways for stress transfer. Furtherntbeeaddition of flexible 3D nanofibers to
the epoxy resin increased the flexibility of themgmsite. At higher content dfcattered
fibers over than 3.9 wt% caused decreasing compeesgength and strain compare with
the same filling content prepared by the cast-aeplprocess, the aggregation can lead to
forming the stress concentration sites in the emxgposite. As nanoparticles agglomerate,
the interfacial bonding would be lower, and theadl¢o the poor stress transfer between

epoxy and nanofibers.

(3)600 | IE W Pure epoxy (b)lm _| W Pure epoxy
I K-NFPs K-NFPs
Il K-NFFs Il K-NFFs
= 500+ 100
& 2
= =
S '
= 400 2 80
) g
] 2
% 300 2 604
2 Z
.E E
=
; 200 4 g 404
= =3
g Q
O 100 20
0- - 0
Pure epoxy 1.8 3.9 53 7.0 16.4 Pure epoxy 1.8 3.9 53 7.0 16.4

Filler content (wt%) Filler content (wt%)

Fig. 5. The compressive properties of the 3D foam skeletb the nanofibers (3D

NFFs)/epoxy composites via cast-in-place methodmpayed with the nanofibers
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(NFPs)/epoxy composites by direct mixing method) (@ompressive strength, (b)
compressive strain.

The flexural properties of pure epoxy and its cosifgoare shown in Fig. 6. It can be
seen that the flexural properties of the 3D NFFeaeced composites were improved
higher than that of the NFPs/epoxy composites. flaeural strength of NFP filled
composites had the highest value of 143.4 MPa W®ith wt% of filler content.With
increasing the NFPs loading to 5.3 wt%, the flekwgtmength of the nanocomposite
decreased to 133.4 MPa. A high percentagscattering fibers could act as defects within
the epoxy matrix. While the flexural strength amcis of composites epoxy reinforced by
5.3 wt%, 3D NFFs had a maximum value 228.9 MPa &o, respectively. In
comparison to the composites prepared by the iwadit filling process with the same
loading (5.3 wt%), the flexural strength and thaist of 3D NFFs are increased by 71.6%
and 44%, respectively. Besides, with increased FBdNloading to 7.0 wt%, the flexural
strain of functionalized 3D NFFs composites wag atsreased by 47.1% as compared to
the pure epoxy, which is due to the rise in theeaspmatio of the 3D nanofibers in the epoxy
composite. While the flexural strain of epoxy comip® prepared by the traditional mixing
process was improved by 14.3% with the same loafiir@ wt%). Application of the 3D
NFFs to enhance the epoxy composite by the cgsiace process resolved the
agglomeration problem in the preparation of theacamposites. The 3D NFFs skeleton
considerably decreased the variance in stressidosabf 3D NFFs/epoxy composites and
highlighted the mechanical efficiencyo disclose the effect of the surface modificatbon

the composite, we also conducted the mechanicabcteaistics and fracture morphology



289 the pristine 3D NFFs enhanced epoxy composite (8f. and S2, Supplementary

290 Information).
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291  Fig. 6. The flexural properties of the 3D foam skeletdrthe nanofibers (3D NFFs)/epoxy
292  composites prepared via cast-in-place method, cosdpaith the nanofibers (NFPs)/epoxy
293  composites prepared by direct mixing method. Flakstrength (a) andlexural strain (b).
294 3.4 The comparable analysis of strengthen mechanisms between the cast-in-place and

295 traditional mixing processes

296 The surface and the fracture morphology of the JB-Mpoxy composite prepared by
297 cast-in-place process and the NFPs/epoxy compgsipared via traditional mixing
298  process were as shown in Fig. 7. The surface méghof the composites before curing
299 is ascan be seenin Fi. 7 a and b. Owing to tle@ @orous of the 3D NFFs , the epoxy can
300 be easily infiltrated [41]. Whereas agglomerationl dedimentation ofianofiber particles
301 (NFPs) are obvious (Fig. 7b) in the NFPs/epoxy aositp, which results from Coulomb
302  attractions and Van der Waals forces [42-44]. Lilsewthe dispersion state and interfacial
303 affinity were confirmed from the fracture surfaceonphology of 3D NFF/epoxy and

304 NFP/epoxy composites, as shown in Fig. 7 al and b1.



Agglomeration

Fig. 7. Comparison of the composites samples preparetl wétst-in-place and
traditional mixing processes. The optical microsesprface of 3D NFFs/epoxy composite

prepared by the cast-in-place process (a), and Mp®sy composite prepared by
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317
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322

traditional mixing process (b); the SEM imagesha fracture surfaces of 3D NFFs/epoxy
composite prepared by cast-in-place process (atl)tlee NFPs/epoxy composite prepared
by traditional mixing process (bl); (a2) and (B29 the illustration of the development of
the cracks in the 3D NFFs/epoxy and NFPs/epoxy oaitgs, respectively. The contents
of the nano filler in the composites are 3.9 wt%.

The fracture surface of the 3D NFFs/epoxy compdsitg. 7 al) was of homogeneous
micro-cracks, ascribing to the stress transferughothe 3D NFFs. The crack deflection
and coalescence of micro-cracks resulted in a reuglace. Also, a porous interconnected
skeleton and its capability to bend and flex inpmesse to the stress allowed effective
energy dissipation [45]. As shown in Fig. 7 bl, frecture surface of the NFPs/epoxy
composite presents the typical brittle fracturehvaktensive micro-cracks distribution and
relatively smooth. The 3D NFFs takes important iole@nproving the fracture strength of
3D NFFs/epoxy composites. On one hand, the fraeeegy is dissipated when the cracks
reaches the 3D NFF skeleton. On the other, thelestafd well-dispersed nano fibers
caused the crack deflection, which enhanced thetuira strength of the composite.
Furthermore, as shown in the spectrum of silaniX&ds (Fig. 4 d and e), the silane
coupling agent was connected to the nano fibersugir covalent bondslt was then
reasonably explained the chemical bonding formeadden the 3D foam skeleton and the
epoxy.

As expected, inside the 3D NFFs strengthened epoxyposite processed with the
cast-in-place method, the nano fibers involves lctaaging, the bridging process can
suppress crack propagation, as illustrated in Fig2. The crack energy profligates by

forming good dispersion and interfacial adhesiotwben the nanofibers and the matrix
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(Fig. S3, Supplementary Information). Therefores thaximum fracture toughness has
been obtained by the cast-in-place process usindNBBs in the matrix with improved
interface adhesion. The agglomeration of nandfidarthe polymer matrix can cause
cracks formation and propagate quickly, resultimg decreasing of the strength of
composites accordingly, as illustrated in Fig. 744).
4. Conclusion
This work demonstrated a new strategy for the pegjma of 3D nanofibers foam (NFFs)
with tunable densities towards a high-performanicertiinuous composite by the cast-in-
place process. Compared with the scattered nagrefiwithin the epoxy matrix prepared
via direct mixing process, the 3D NFFs skeletonth wast-in-place method has overcome
the issue of agglomeration of nanofiller in the x@pmatrix. This process has also reduced
the consumption of organic solvents to dispersentr®filler during the traditional direct
mixing process. As compared to the pure epoxy, ¢henpressive strength of the
NFFs/epoxy composite prepared by the cast-in-pfaethod was improved by 436.8%,
while the NFPs/epoxy composite prepared by theatioadl filling process was increased
by 173.5% with the same loadings (3.9 wt%). Besides flexural strength of the
NFFs/epoxy was improved by 133.5%, while the NHR®{g composite prepared via the
traditional filling process was improved by 63.1%hthe same loading (5.3 wt%). This
work has explored an effective strategy for devielghigh-performance nanocomposites,
which could be an excellent candidate for automecdnd aircraft industry.
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Highlights

. The 3D nanofibers foam has been prepared and adopted to fabricate high-performance
epoxy composite by a cast-in-place process.

. The compressive strength of the as prepared 3D NFFS/epoxy composite was improved
by 436.8% than the pure epoxy resin.

. The flexura strength of the as prepared 3D NFFs/epoxy composite was aso 133.5%
higher than the pure epoxy resin.
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