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A B S T R A C T   

In recent years, several optimization strategies have been developed which reduce the overall defectiveness of 
the RTM manufactured part. RTM filling simulations showed that, even using optimized injection strategies, local 
variations in permeability could still generate local defects in the part. Such defects must be identified quickly 
and accurately right after the injection phase in order to repair or scrap the part. The present paper analyses the 
feasibility of diagnosing the quality after the injection stage of RTM parts by Machine Learning. The diagnosis 
was performed using a Supervised Learning binary classification model trained with synthetic data set. Among 
the different predictive models studied, Extreme Gradient Boosting and Light Gradient Boosting Machine were 
the most accurate models for predicting the filling quality of RTM, with an accuracy of 84.9% and 83.35%, 
respectively. In addition, a scaling of the ML model allowed not only to predict the quality of the part but also to 
locate the areas where the defect was generated. The computation time of the trained ML model versus the FEM 
model, both computed with a workstation (CPU Intel Xeon Processor E5.2690 with 2.9 GHz–8 core), were 
compared. In the specific case studied, a reduction from 360 s to 1 s was observed in the computation time 
utilizing the trained ML model. Thus, Supervised Learning predictive models can be used for diagnosing the 
composite quality. They are fast enough to be integrated in real processes and could be helpful for designing the 
monitoring system.   

1. Introduction 

The interest in Carbon Fibre Reinforced Plastics (CFRP) is increasing 
in applications where lightweight design is strategic. CFRP have been 
extensively used in aeronautics, where properties such as specific stiff
ness and strength, as well as corrosion resistance, are appreciated [1]. 
The automotive industry is also seeking massive usage of CFRP, but the 
high operational costs associated with their manufacturing processes 
limit a wider application in the sector [2]. Liquid Composite Moulding 
(LCM) processes, and especially Resin Transfer Moulding (RTM), are 
competitive for overcoming these challenges [3]. RTM is a processing 
method with the potential for producing low-cost and geometrically 
complex automotive composite parts [4]. Nonetheless, RTM process 
robustness is a challenge, as the part quality is affected by the intrinsic 
manufacturing uncertainties (fabric reinforcement, matrix material and 
process parameters variations) [5]. 

In RTM, a resin is injected into a mould cavity, where a porous dry 
textile preform has been previously placed. Local variations of 

permeability, caused by the multiscale geometric variations of the pre
form [6], induce impregnation defects such as dry zones and voids. 
Consequently, to ensure the quality of the final part, complex and 
time-consuming Non-Destructive Inspection (NDI) operations are 
required. The cost of these NDI operations can reach 15% of the value of 
the final component [7]. As impregnation related defects reduce the 
mechanical properties, severe acceptance criteria (less than a 1% of void 
content [8]) are imposed, resulting in costly rework or scrappage. 
Additionally, more conservative part designs which do not enhance the 
lightweight potential of CFRP are applied [9]. 

Smart manufacturing approach can enable zero defect 
manufacturing (ZDM) [10]. For that, the production system must ac
quire sufficient information from the process and be able to adjust the 
process in real time. In other words, it must build a digital twin of the 
physical world and accurately recreate the RTM process [11]. 

For digital model generation, numerical simulation technology is 
widely used in RTM, since flow, cure and mechanical models optimize 
the manufacturing process [4]. For this approach, a thorough knowledge 
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of material properties and the process itself is needed. Furthermore, they 
are based on generalised boundary conditions that do not take into 
consideration the fluctuations of the preform permeability of each part. 

It is therefore necessary to know the real status of the process 
through monitoring and data acquisition. Several data acquisition sys
tems are used for RTM, but pressure sensors are particularly advanta
geous [12]. It is possible to associate pressure values measured at 
discrete points with resin flow-front position at any time [13]. Addi
tionally, by injecting gas prior to the resin injection, the real local 
permeability of each preform can be determined by analysing the 
pressure sensors signals [14]. The pressure evolution in the resin during 
the filling stage can be related to the void formation [15], but in order to 
detect hidden patterns data-based modelling are needed. 

Data Analysis, such as Machine Learning (ML), has demonstrated to 
be well aligned with the ZDM philosophy [16]. ML algorithms can 
operate with high-dimensional multi-variate data and allow extracting 
implicit patterns from dynamic and large-scale data sets [17]. This en
ables future predictions and data-driven decisions to be made. There are 
different ML approaches: Supervised Learning (SL), Unsupervised 
Learning, Semi-Supervised Learning and Reinforcement Learning. In 
manufacturing processes, there is a huge amount of data, but their in
terdependencies are complex and patterns are not obvious. For this 
reason, SL is the most widely used ML technique in the industry [18]. SL 
fits a model from previously labelled data in order to make future pre
dictions, which can be a regression or a classification. Whereas regres
sion gives a numerical value, classification predicts categorical class 
label (binary or multi-label classification) making suitable for quality 
diagnosis [10]. 

The accuracy of ML techniques often requires large amounts of data 
for better generalization and accuracy, which is scarce in the case of 
RTM. Generating this data experimentally is an expensive and time- 
consuming approach; additionally the uncertainties that occur during 
the process can limit the usage of this data. An alternative solution is to 
generate synthetic data by numerical simulation based on the conven
tional Finite Element Method (FEM). Data scarcity is solved by synthetic 
data in different process optimization [19,20] and structural validation 
scenarios [21,22]. FEM and ML techniques are combine in order to 
validate prediction and optimization methodologies [19]. To ensure that 
the ML prediction is reliable, the FEM model on which it is based must be 
as close to reality as possible, which requires a previous characterization 
of the process and materials. 

When building ML models, the classification algorithm must be 
selected as well as the value of its hyper-parameters. This is a very time 
consuming task, as many combinations need to be tried in order to find 
the most efficient algorithm and hyper-parameters. In response to this, 

Automated Machine Learning (Auto-ML) technology is gaining rele
vance, since it automates the most sensitive phases of the machine 
learning process [23]. 

The potential of ML for composite materials has begun to be explored 
in recent years [24]. ML techniques have been used for composite design 
and stacking optimization [25,26], NDI techniques for properties 
assessment [27–29] and for the prediction of mechanical performance 
[30,31]. Among the composite manufacturing processes, ML has been 
used for the optimization of The Automated Fibre Placement (AFP) 
processes [32,33] and for bond strength quality prediction in a 
hybridisation of thermoforming and over-moulding injection processes 
[34]. Regarding LCM processes Gonzalez et al. [35] explored the utility 
of ML, Convolutional Neural Networks (CNN), for predicting the loca
tion and size of permeability disturbances based on supervised regres
sion. However, CNN models have shown not to be the most suitable for 
analysing time series, and they have not provided any criteria for the 
diagnosis of the RTM parts’ quality. 

The main contribution of this paper is the development and valida
tion of a predictive model based on supervised learning for the diagnosis 
of defects in RTM filling stage. Numerical simulation results of the resin 
injection stage were used as synthetic data for training and validating 
the model. The selected case study was a rectangular plate segmented in 
32 zones with local variations of permeability. 

2. Methodology 

The main objective was the implementation of a predictive model 
based on supervised learning to classify the quality of the voids and the 
unfilled zones of a RTM composite parts. For this purpose, the guidelines 
of The Cross Industry Standard Process for Data Mining (CRISP-DM) 
approach [36] were followed. The CRISP-DM methodology determines 
that between the definition of the problem and its final deployment, four 
phases must be followed (Fig. 1): Data acquisition, data pre-processing, 
model training, and model evaluation. 

In the data acquisition phase, synthetic data was gathered using the 
numerical simulation method of the RTM process. The objective of this 
phase was to generate different scenarios of the RTM process by intro
ducing local permeability variation that generated different quality 
outputs (voids and unfilled zones). The part to be manufactured was a 
rectangle segmented in 32 zone, but the four corner zones (vent ports 
location) were not considered in the quality analysis. Each zone was 
assigned a permeability from two possible values (with and without 
binder, Kbin and Kref, respectively). The resulting 28 zones and 2 possible 
permeability values for each zone give 268,435,455 possible combina
tions. Within all these possible combinations, they were classified into 

Fig. 1. The scheme of Cross-Industry Standard.  
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groups according to the number of zones with Kbin permeability (n- 
group). That is, “3-group” had 3 zones with Kbin permeability and the 25 
with Kref permeability. To limit the cases, a maximum of 400 simulations 
were randomly selected from each n-group. Thus, 10,014 simulations 
were carried out. In each of the simulations, injection flow-rate and the 
pressure time series at the central point from the 28 zones were recor
ded. Each simulation was labelled as good/defective quality according 
to the void content and filling factor criteria. A part was considered 
defective if it had, at least, one zone with a void content higher than 1% 
or a filling factor lower than 99.5%. 

Then, in the pre-processing phase, flow-rate and pressure time series 
were processed and structured to obtain their descriptive features by 
analysing them in the time, frequency and Hilbert domains. Recursive 
Feature Elimination (RFE) reduction technique was applied to select the 
most important features without losing performance [37]. Once the data 
was structured, it was split into training dataset and testing dataset, the 
80% and the 20% of the data respectively. 

In supervised learning, model training is defined as the phase in 
which the machine learning algorithm builds a predictive model that 
relates the input features with target variable (good/defective). In this 
way, the model is able to predict the label when fed with new input 
features. However, there are many classification algorithms with their 
respective hyper-parameters. In order to optimize this stage, AutoML 
was used to find the most suitable algorithm and its hyper-parameters 
[23]. 

Finally, the built predictive model was evaluated using flow-rate and 
pressure time series features from testing dataset. These quality di
agnoses of the supervised ML model were compared with the FEM re
sults, and confusion matrix and the Receiver Operating Characteristic 
(ROC) curve were applied to validate its performance [37]. 

2.1. Data acquisition 

The numerical simulations of the RTM filling were carried out by the 
commercial software PAM-RTM®. This simulation software is based on 
finite element/control volume and simulates the filling stage of the RTM 
process basing on Darcy’s law: 

ν= −
K
μ ⋅∇P (1)  

where ν is the Darcy’s impregnation velocity [m/s], μ is the viscosity of 
the resin [Pa⋅s], ∇P is the pressure gradient inside the mould [Pa/m] and 
K is the permeability tensor of the preform [m2]. The permeability is 
described as the easiness of a fluid to flow through the preform. 

The case study used was a thin-walled flat plate and therefore, two- 
dimensional analysis may be sufficient to describe the advance of the 
flow [38]. Since the permeability directions coincided with the global x 
and y directions, the permeability values kxx and kyy were enough to 
define the permeability tensor. 

The used geometry was a 350 × 250 × 3 mm plate. The mesh size has 
a strong influence on the numerical results, so a convergence study was 
carried out in order to balance the resolution and computational cost. 
This study showed that the result converged from 10,000 elements. The 
geometry was meshed with 4 mm size 12,288 triangular thin shell ele
ments. The following assumptions were made for the simulation:  

• The stiffness of the mould was considered infinite.  
• The preform thickness and permeability were constant.  
• Race-Tracking effect (inhomogeneity in flow due to the higher 

permeability between the mould and the fabric) was not considered.  
• The resin was incompressible. 

The resin was injected from a central injection port, creating a radial 
flow pattern. Furthermore, four vent ports were placed in the vertexes of 

Fig. 2. Scheme of the rectangular plate with.  

Table 1 
Permeability values with and without binder.   

Kref Kbin 

Reference HPT 610 C090 HPT 610 C090 + 15 g/m2 binder 
Kxx [m2] 4⋅10− 11 8⋅10− 11 

Kyy [m2] 5⋅10− 11 9⋅10− 11  
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the mould. The part was segmented into 32 zones in order to create 
different permeability scenarios (Fig. 2). In addition, a monitoring point 
was located in the middle of each zone to record pressure evolution. 

The injection parameters were defined by the velocity optimization 
module of PAM-RTM®. This module follows the methodology described 
by Ruiz et al. [39] for void content reduction. By compensating the 
viscous and capillary forces, the void content of the part can be reduced. 
This balance is quantified by means of the dimensionless capillary 
number (Ca*): 

Ca* =
μ⋅ν

γ⋅cos θ
(2)  

which depends on the resin/fibre contact angle (θ), the surface tension 
of the resin (γ), the viscosity of the resin (μ) and the velocity of the flow- 
front (ν). 

The fibre used was a biaxial Non-Crimp Fabric (NCF) of 50k high 
resistance carbon fibre, reference HPT 610 C090 from SGL. The fibre 
orientation was 0/90 and surface density was 610 g/m2. Permeability 
variation due to binder application was taken into account in the sim
ulations. The in-plane permeability measurements for both, preform 
with and without binder, were carried out by means of a rectilinear and 
saturated injection at constant flow-rate [4]. The binder was an epoxy 
resin in powder state (Araldite LT 3366 BD). The applied binder amount 
was 15 g/m2 per layer. Two different permeability values for each zone 
were defined [38] (Table 1); one without binder (Kref) and a higher 
permeability with binder (Kbin), which is justified by the creation of new 
flow channels by the binder [40]. 

The resin used was a fast curing epoxy resin (XB 3585) and hardener 
(Aradur® 3475) supplied by Hunstman. The density of the mixture, 
1161 kg/m3, was characterized by the standard test method for density 
of plastics described by ASTM D792-20 [41]. The resin was injected at 
120 ◦C and the rheological model used as input for the simulation was 
provided by the manufacturer’s technical data sheet. 

Contact angle between the resin and the fibre was experimentally 
measured by X-ray micro-computed tomography (XCT) using the tech
nique described by Castro et al. [42]. For this purpose, a carbon wick 
was introduced into a glass tube, which was impregnated by the capil
lary effect. The sample was introduced into the XCT and allowed to 
obtain several images of the impregnation meniscus. After processing 
nine meniscus, a contact angle value between the resin and the fibre of 
47.8◦ was obtained. 

The surface tension was experimentally determined by Wilhelmy 
plate method [43]. This method consists on pulling a plate immersed in 
the resin until its emersion. Then, by measuring the difference in force 
before and after emersion, the surface tension value is obtained, which 

in this case was 57.36 N/m. 
As previously mentioned, 10,014 simulations were carried out, with 

different permeability scenarios. The average computational time of 
each simulation was 6 min. The programming of these simulations was 
developed using Python language. The developed code allows gener
ating inputs for each scenario, launching it and acquiring the output 
data in an automated way. The acquired output data were the following:  

• Pressure evolution in the middle point of each zone  
• Flow rate evolution  
• Void content of each zone  
• Filling factor of each zone 

The corner zones (Z1, Z8, Z25 and Z32) were excluded in order to 
avoid irregularities at the vent port. 

2.2. Data pre-processing 

The 10,000 simulations were divided in two parts; 8000 were used 
for training and 2000 for testing. The time series from the simulations 
were pre-processed and the two-dimensional (time-dependent) time 
series were transformed into one-dimensional arrays (time series fea
tures). In this way, an array containing the time series features and the 
quality label was obtained from each simulation. 

Feature extraction was performed on time series data, extracting 
relevant statistical features (Table 2). Time, frequency and Hilbert- 
frequency domains transformations were used for getting different 
points of view on the data. After each data transformation, numerous 
statistical features were extracted. For the development of the time se
ries feature extractor, the tsfresh library was used as a reference, but due 
to disagreements in the design and implementation, a new library was 
developed. 

After the extraction, the correlation between pairs of variables was 
measured, as the feature extraction process can produce highly corre
lated features. These features were filtered in an effort to reduce noise 
and obtain a simpler representation of the fabrication process. 

One of the main challenges of ML models is to find the right fit and 
avoid underfitting and overfitting effects. The underfitting effect occurs 
when the model is not complex enough to identify patterns and therefore 
does not achieve good results when making predictions with new data. 
On the other hand, overfitting occurs when the model fits too closely to 
the known data but is not able to obtain general patterns and the pre
dictions with new data are not as accurate. In order to optimize per
formance, Recursive Feature Elimination (RFE) was applied using a 
Random Forest classifier, identifying the most relevant features. RFE is a 
backward elimination technique, which consists of removing the least 
relevant features iteratively eliminated to find the optimal number of 
features [37]. 

2.3. Model training 

Subsequently, the filtered data were used as input for the automatic 
model optimizer (Auto-ML), TPOT [44] and Hyperopt [45] library were 
used for this task. This approach simplified the data analysis process, as 
the phases where the most sensitive decisions taken were automated. 
Furthermore, as a consequence of using genetic programming, opti
mising multiple algorithms and doing hyper parameter combinations, 
the most efficient models were achieved. This optimization was per
formed setting an initial population of combinations of algorithms and 
hyper parameters, and through an iterative selection process called 
generations, only the most accurate pipelines were selected and evolved. 
When it comes to the selection process, the fitness of each pipeline was 
calculated on the accuracy of the 5-fold cross-validation technique of the 
estimator. This validation technique provides a clear indication of how 
well the model can generalize in a new dataset without overfitting. 

The final model was analysed for the purpose of gaining insight into 

Table 2 
Statistical features extracted from filling time series.  

Feature Time Frequency Hilbert 

Standard error mean ✓ ✓ ✓ 
Signal energy ✓ ✓ ✓ 
Maximum ✓ ✓ ✓ 
Minimum ✓ ✓ ✓ 
Skewness ✓ ✓ ✓ 
Kurtosis ✓ ✓ ✓ 
Standard deviation ✓ ✓ ✓ 
Variance ✓ ✓ ✓ 
Length ✓ ✓ ✓ 
Mean ✓ ✓ ✓ 
Median ✓ ✓ ✓ 
Mean second derivative ✓   
Cid ce (complexity) ✓   
Sample entropy ✓   
Augmented dickey fuller ✓   
C3 ✓   
Large standard deviation ✓   
Percentile ✓   
Time_reversal_asymmetry ✓    

J. Mendikute et al.                                                                                                                                                                                                                              

astm:D792


Composites Part B 221 (2021) 108973

5

the manufacturing process. The interpretation procedure was carried 
out focusing on the importance of each feature and the interrelations 
between them. Apart from the model suitability analysis, a feature 
importance and feature interrelation analysis were conducted. 

Finally, the obtained results were minutely analysed using the 
domain knowledge, in order to acquire new insight into the process. 

2.4. Model evaluation 

Once the model was trained, it was ready for evaluation. The ML 
model made a good-defective prediction for each of the 2000 test sim
ulations, based on the time series features of each simulation. Each 
prediction was compared with the result obtained by FEM and it was 
determined how the prediction had been:  

• True Positive, TP: the ML model predicted that the part was good and 
matched the FEM result (no defective areas).  

• True Negative, TN: the ML model predicted that the part was 
defective and matched the FEM result (at least 1 defective zone)  

• False Positive, FP: the ML model predicted that the part was good, 
but was wrong, as it did not match the FEM result (at least 1 defective 
zone)  

• False Negative, FN: ML model predicted that the part was defective 
but was wrong, as it did not match the FEM result (no defective 
zones). 

The performance of the model was measured by the confusion matrix 
and the Receiver Operating Characteristic (ROC) [37]. The confusion 
matrix is a square matrix that compares the real label (FEM results) with 
the predicted label (ML results). This matrix shows the general behav
iour of the model by analysing the total number of True Positive (TP), 
True Negative (TN), False Positive (FP) and False Negative (FN). Accu
racy parameter (ACC) provides general information about how many 
samples were correctly classified, and it is estimated as the sum of all 
correct predictions (TP + TN) divided by the number of total predictions 
[37]: 

ACC =
TP + TN

FP + FN + TP + TN
(3) 

ROC curve compares models based on their performance, consid
ering True Positive Rate (TPR) and False Positive Rate (FPR), for 
different decision thresholds [46]. To characterize the performance of 
each model, the Area Under the Curve (AUC) was used. The perfect 
model is the one with TPR of 1 and FPR of 0, which result in a value of 
AUC of 1 and a random guess, shows a linear ROC curve with a value of 
AUC of 0.5: 

FPR=
FP

FP + TN
(4)  

TPR=
TP

FN + TP
(5) 

In data analysis, all the features were not equally relevant predicting 
the output. Feature importance measures how relevant a feature is in 
building the predictive model. More a feature is used, higher the relative 

importance. The relative importance was computed for each feature and 
all the features were compared between them. 

3. Results and discussion 

The results section is divided into four subsections according to the 
section defined in the methodology section. 

3.1. Data acquisition 

Of the 10,000 simulations performed, 5041 were labelled as good 
quality and 4959 as defective quality Among the defective quality 
simulations, 1582 have at least 1 zone with more than 1% of void 
content, 1959 have dry zones and 1418 have both defects. This results 
on a correctly balanced dataset (almost 1:1 ratio), and it was not 
necessary to balance the data to prevent the model ignoring the minority 
class [37]. 

Among all the simulation, three representative results were analysed. 
One without any defects (SI), another with void content higher than 1% 
(SII) and the last with dry zone (SIII). The permeability map input of each 
simulation, which are shown in Fig. 3, generated a distinct output for 
each simulation. 

3.1.1. Flow rate 
The velocity optimizer module modified the injection parameters in 

order to assure the optimum capillary number, and consequently it kept 
the flow-front velocity at its optimum value. 

Two stages can be detected by analysing the flow profile for the SI, SII 
and SIII simulations (Fig. 4). The first stage went from the beginning of 
the simulation to about 50% of the filling. It described the radial flow 
pattern of the resin before touching the nearest mould walls. If the vis
cosity would be constant, the flow rate increase would be linear since the 
perimeter of the flow-front would increase linearly. However, as the 
viscosity of the resin increased over time, the flow-front velocity 
decreased over time in order to assure the optimum capillary number. As 

Fig. 3. Permeability map of the analysed.  

Fig. 4. Evolution of the Flow-rate with the filling.  
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the optimum flow-front velocity decreased over time, the rate of change 
of the flow-rate also did. 

In the second stage, from the moment the resin touched the wall until 
the complete impregnation of the mould, the flow-front area remained 
constant. In the same way, as the resin viscosity increased, the optimum 
flow-front velocity and thus the flow rate decreased. 

These results confirmed that to ensure the minimum void content, a 
variable injection was necessary [39]. Furthermore, this variable in
jection was not always be the same for the identical geometry. As shown 
in Fig. 4, a variation in permeability affected the mould filling and 
therefore the injection conditions needed to be readjusted. 

3.1.2. Dry zone defect 
Fig. 5 shows the evolution of filling pattern of both SI and SIII at 20%, 

60% and 95% of the filling. At 20% of filling, both simulation followed 
the same pattern. Once the flow-front arrived to the closer wall, the 
higher local permeability in second, third and fourth zones of the SIII, 
allowed a faster flow-front as can be seen when filling is at 60%. 
Consequently, at 90% of filling, the fastest flow-front arrived to the vent 
port before total filling of the cavity and a dry zone was generated 

(Region-A). 

3.1.3. Void content defect 
The simulations SI and SII were compared in terms of void content. As 

it can be seen in Fig. 6a the void content was homogeneous and 
generally lower than 0.5%, fulfilling the quality criteria of 1% void 
content in all zones. Nevertheless, in Fig. 6b a higher void content can be 
visualized, where a high void content band (>1.5%) stands out. The 
location of the band, coincide with the boundary of Kref and Kbin zones 
seen in the permeability map approximately at x = 300 mm. It can be 
observed how a local variation of permeability can induce an increase in 
void content. In this case, the permeability variation was due to the 
application of binder, however, textile heterogeneities, nesting effect or 
race-tracking [5] could also induce local permeability variations and 
therefore could compromise the quality of the part in the same way. 

3.1.4. Pressure evolution 
Unlike recording the pressure at the injection port, the monitoring 

points placed in the centre of the zones can give information about the 
arrival time of the flow-front, its evolution and thus deduce the homo
geneity of filling. It was analysed the pressure evolution in zone 13 (one 
of the four zones of the injection point) for the tree cases (SI, SII and SIII) 
to understand its evolution for different permeability scenarios (Fig. 7). 

Fig. 5. The evolution of filling pattern of SI.  

Fig. 6. Final void content of the a)SI, b)SII.  

Fig. 7. The evolution of the pressure with filling in.  
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Although zones 12, 20 and 21 were as close as zone 13, zone 13 was 
arbitrarily chosen to analyse the overall pattern. 

In all cases, once the resin reached the centre of the zone, the pres
sure started to increase until it reached a maximum value between 40% 
and 50% of the filling. This maximum coincided with the maximum 
injection flow rate shown in Fig. 4 and occurred when the resin reached 
the closest wall of the mould. The slope of pressure evolution and the 
instant of the peak differed in SII, which was due to a higher permeability 
(Kbin) in the zones around the injection port. Then, as the area of the 
flow-front was reduced, the flow-rate was reduced and thus the pressure 
inside the cavity. The pressure started to increase again until the injec
tion was finished, when the resin arrived to one of the four vent ports. 

Each of the monitoring point recorded the arrival of the flow-front 
and its evolution after arrival. This information was key to identify 
the evolution of the flow inside the cavity and be able to determine if the 
part was filled correctly without defects. However, it was impossible to 
detect hidden patterns with the naked eye and it was necessary to apply 
to data analysis methods. 

3.2. Data pre-processing 

The large amount of data and the difficulty associated with pre
dicting defects at a glance, automatic learning techniques were used for 
data analysis. Feature extraction process was applied to the time series, 
obtaining 8159 features for each simulation, of which lot of them were 
highly correlated. The features with a correlation higher than 90% were 
removed, leaving 1054 features for data analysis. In addition, a Recur
sive Feature Elimination (RFE) was applied [47], identifying that 64 was 
the optimum feature number. 

3.3. Model training 

The pre-processed data feeds the AutoML, and pipeline determined 
that the most accurate model was Extreme Gradient Boosting (XGB) 
[48]. Light Gradient Boosting Machine (LigthGBM) [49], which also has 
a gradient boosting framework but is not included in TPOT, was 
included in the analysis showing also good results. 

The application of the AutoML system based on TPOT genetic pro
gramming shows that ML pipelines can be improved their effectiveness 
in supervised classification problems, even with low prior knowledge. 
This can be beneficial for processes, like RTM, where no experienced 
data science team is available. Analysing TPOT results, it was observed 
that the models with the greatest predictive capacity are the so-called 
Ensemble Methods Based on Decision Trees. These Ensemble algo
rithms combines multiple models (weak learners) to obtain a more 

robust predictive model reducing noise, bias and variance [17]. The way 
in which weak learners are combined varies, with Boosting and Bagging 
being two outstanding techniques. These methods, based on decision 
trees, overcome the artificial neural network (ANN) in classification 
problems when data come in structured rather than unstructured form 
(images, texts …). This explains the fact that it is better adapted to the 
RTM case study where featured and structured time series are available. 
It is observed that both XGB and LightGBM (Gradient-Boosting method) 
are more robust algorithms than Random Forest (Bagging method). This 
agrees with the literature, since Gradient-Boosting are commonly used 
in predictive modelling applied to failure diagnosis [50]. 
Gradient-boosting methods can be better increasing accuracy and speed 
due to its parallel tree boosting capabilities, while bagging are better 
reducing overfitting. 

3.4. Model evaluation 

As mentioned, Extreme Gradient Boosting (XGB) [48] and Light 
Gradient Boosting Machine (LigthGBM) [49] were selected as the most 
accurate models. Once the hyperparameters were optimized, both 
reached AUC values of 0.92 (Fig. 8). 

The comparison of the optimized models showed that the XGB al
gorithm accuracy, 84.9% (Fig. 9a), was slightly greater than the accu
racy obtained by the LigthGBM model, 83.35% (Fig. 9b), both of them 
above 2-sigma. 

Once the behavior of the model was evaluated, the cases used for this 
evaluation were analysed. It was observed that although the velocity 
optimization reduced the overall void content in all simulations, local 
defective zones were created. The ML model efectiveness detecting void 
zones was increased when the overall void content was high or there 
where several defective zones. When the defective zones were greater 
than or equal to 2, the succes rate was 98.84%, and when the overall 
void content was higher than 0.55% the succes rate was 100% (Fig. 10a). 
On the other hand, analysing the parts with unfilled zones (Fig. 10b), it 
can be seen that the error rate is less than 10% in both FN and FP. 
Moreover, over 1 unfilled zone no FP cases were found, being 100% the 
accuracy of the model. This showed that the model was capable of 
rejecting the most deviated parts and it only failed when their quality 
was close to the quality threshold. 

All ML problems rely their prediction on data; the greater the volume 
of the data, the better accuracy was achieved. Fig. 11 shows the accuracy 
in function of training datasets volume for XGB model. As can be 
observed, at 4000 datasets the accuracy reached a plateau around 83%. 
Consequently, the 8000 datasets used for training were considered 
enough for the modelling. 

In an attempt to understand the process, a feature importance 
analysis was made, by computing and gathering them by zones (Fig. 12). 
As can be seen, the zones 9, 16, 17 and 24, which were the last zones to 
be filled, had the highest importance when predicting the overall quality 
of the part. 

In a process like RTM is not feasible to place too many sensor in the 
mould. Therefore, the objective should be to minimize the number of 
sensors without losing information about the process. For that reason, 
the reliability of the XGB and LigthGBM models was analysed by only 
feeding it with the features of the aforementioned four most important 
zones. The number of features was reduced to 15, showing that 
LightGBM results were better with an accuracy of 76.7% (Fig. 13a) and 
an AUC of 0.87 (Fig. 13b), which is still above 2-sigma like with 32 
monitoring points. LightGBM has proven to be faster in training, using 
less memory and getting more accuracy and coincides with the results of 
studies that compare gradient boosting methods [51]. 

In order to understand when and why the model fails, defective parts 
were analysed. For this purpose, the zones with excessive void and/or 
unfilled, as well as their position, were compared when the model was 
correct (TN) and when the model failed (FP) (Fig. 14). The results show 
that the zones furthest from the injection point are the most critical, as Fig. 8. Receiver operating characteristic.  
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the model does not ensure total prediction success for defects located in 
these zones. Nevertheless, when the NDI is needed, it may be sufficient 
to analyse the zones where the model can fail. Thus, ML-based NDI can 
be a way to reduce costs and speed up quality control process. 

To obtain a more concrete result about the position of the defect, the 
model was scaled to the quality prediction of each zone. In this way, the 
model was not only able to predict the overall quality of the part but also 
to detect the defective zone location. As a validation, the quality of the 

SI, SII and SII (analysed in the previous section) simulations was 
predicted. 

In Fig. 15, ML and FEM results are superimposed, it can be seen how 
the defect predictions of the ML model matched FEM results in all cases. 
In the first case, SI (Fig. 15a), the ML model correctly predicted its 
quality and did not predict any defective zone. In the second case, SII 
(Fig. 15b), there were zones with high void content, and the model was 
able to detect such zones (Zones 7, 16, 24 and 27). Finally, in the same 
way, in the SIII simulation (Fig. 15c), the ML model is also able to detect 
the position of the unfilled zone (Zone 9). These results are promising as 

Fig. 9. Confusion matrix for a) XGB, b) LigthGBM.  

Fig. 10. a) Void quality analysis showing, b) filling quality analysis showing.  

Fig. 11. Effect of the trainning size on.  

Fig. 12. Importance of each zone for quality.  
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they allow to detect the position of the defects in the fabricated parts. In 
this way, decisions such as rejecting the part or reworking the defective 
zones can be made and the robustness of the RTM process is improved. 

Finally, the computational cost of Finite Element Method (FEM) and 
Machine Learning (ML) were compared. For that the average running 
time and data size of each simulation was compared (Table 3). It can be 
stated that once the ML model is trained, the predictive model reduce 
the computational time and storing data size comparing to FEM models. 
This reduction can be beneficial for its implementation in the process 
line where the time available for the diagnosis of each part is limited. 

4. Conclusions 

Part-quality after injection stage of Resin Transfer Moulding has 
been diagnosed based on binary classification of Supervised Learning 
trained with synthetic datasets. Diagnosis tools like SL are necessary, 

Fig. 13. LightGBM model evaluation by a).  

Fig. 14. Void and/or filling detecting accuracy.  

Fig. 15. Superposition of the good.  

Table 3 
Computational cost of FEM method and ML method.  

Method Average running time (s) Data size (MB) 

FEM 360 27,000 
ML 1 600  
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since the local permeability variability generates parts with unaccept
able levels of void and/or dry zones. In fact, even if variable injection 
strategies for reducing void content are used, the amount of defective 
parts is high. Results of the 10,000 numerical simulations run with 
different permeability maps showed that 1582 have void content de
fects, 1959 have dry zone defects and 1418 have both. That is, 4959 
simulations were classified as defective compared to 5041 good ones. 
This provided a balanced data set (with a ratio of almost 1:1) to avoid 
training problems in binary classification. 

The algorithm and the hyper-parameters that defines the predictive 
model were chosen automatically by the use of TPOT and Hyperopt li
braries. AutoML results showed that XGB and LightGBM were the most 
accurate models for predicting the filling quality of RTM, both with an 
AUC value of 0.92, whereas the ACC values are 84.9% and 83.35%, 
respectively. In this way, the application of AutoML is validated in a 
complex process like RTM and shows that it may useful tool for process 
engineers as it automates part of the pipeline. It has been demonstrated 
that Ensemble methods based on decision trees are the optimal ones for 
the selected case study, coinciding with several works of literature. 

Feature importance analysis identified that the last filled zones have 
the highest importance when predicting the overall quality of the part. 
Consequently, the amount of pressure monitoring points can be reduced. 
The performance of the models fed with the pressure evolution of the 
four monitoring points located at these zones showed that LigthGBM is 
more reliable than XGB, being its ACC 76.7% and AUC 0.87. Reducing 
the amount of monitoring points from 32 to 4 reduces the diagnosis 
quality, but it is still above 2-sigma. Another advantage of using SL 
instead of conventional FEM process-simulations is the lower compu
tational cost, reducing computing time from 360 s to 1 s (after training) 
and reducing the data-size from 27 GB to 600 MB. 

Training SL predictive models with synthetic dataset may be an 
effective approach to get accurate diagnosis of the impregnation quality 
with an accuracy above 2-sigma. The predictive model allowed the 
identification of the number and location of the pressure sensors in the 
mould, and it may be fast enough to be integrated in real process be
tween injection and curing stages. The present case study was focus on 
permeability variation due to local binder content, but the methodology 
can be extrapolated to any other permeability variation sources, such as 
different fibre compaction level, nesting effect, shearing or others. 

Once the injection is complete, the predictive model may be able to 
determine if the part is defective or not. If it is defective, the part can be 
rejected once it has sufficient stiffness without waiting for total curing. 
This might be a substantial improvement in saving time and energy to 
improve the robustness of the RTM process. 

CRediT authorship contribution statement 

J. Mendikute: Investigation, Software, Writing – original draft, 
Writing – review & editing. J. Plazaola: Investigation, Software. M. 
Baskaran: Methodology, Supervision. E. Zugasti: Methodology, Vali
dation. L. Aretxabaleta: Supervision. J. Aurrekoetxea: Methodology, 
Supervision. 

Declaration of competing interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Acknowledgements 

J. Mendikute would like to thank the Basque Government for the 
predoctoral training grant (PRE_2018_1_0338). Authors would also like 
to acknowledge the Basque Government for providing funding support 
(IT833-16; KK-2017/00062) for this research. 

References 
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