Accepted Manuscript

Crystallization derivation of amine functionalized T_{12} polyhedral oligomeric silsesquioxane-conjugated poly(ethylene terephthalate)

Albert S. Lee, Hyeonyeol Jeon, Seung-Sock Choi, Jeyoung Park, SungYeon Hwang, Jonggeon Jegal, Dongyeop X. Oh, Byoung Chul Kim, Seung Sang Hwang

PII: S0266-3538(17)30292-0

DOI: [10.1016/j.compscitech.2017.04.015](http://dx.doi.org/10.1016/j.compscitech.2017.04.015)

Reference: CSTE 6745

To appear in: Composites Science and Technology

Received Date: 8 February 2017

Revised Date: 31 March 2017

Accepted Date: 12 April 2017

Please cite this article as: Lee AS, Jeon H, Choi S-S, Park J, Hwang S, Jegal J, Oh DX, Kim BC, Hwang SS, Crystallization derivation of amine functionalized T₁₂ polyhedral oligomeric silsesquioxaneconjugated poly(ethylene terephthalate), *Composites Science and Technology* (2017), doi: 10.1016/ j.compscitech.2017.04.015.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

1 **ABSTRACT**

Thorganic hybrid nanoparticles with three different particle sizes: octameric (T₈), and dodecameric (T₁₂). POSS is considered as a promising nucleating agent for particular contribute to high thermal stability and nuc 2 Most inorganic nucleating agents for poly(ethylene terephthalate) (PET) have limited nucleating ability 3 due to poor compatibility with PET. Polyhedral oligomeric silsesquioxanes (POSS) is a type of cage-4 shaped organic/inorganic hybrid nanoparticles with three different particle sizes: octameric (T_8) , 5 decameric (T_{10}), and dodecameric (T_{12}). POSS is considered as a promising nucleating agent for PET 6 because the inorganic moieties contribute to high thermal stability and nucleation and the organic 7 moieties can be tethered to PET chains. In contrast to T_8 POSS, the nucleation ability of T_{12} POSS for 8 PET has been poorly reported. In this study, our newly synthesized aminopropyl functionalized T_{12} 9 POSS (A-POSS) is proposed as a potential nucleating agent for PET. The amine group of A-POSS is 10 able to be chemically conjugated to PET chains, thereby giving a more homogeneous dispersion of T_{12} 11 POSS in PET than non-functional T_{12} Phenyl POSS (N-POSS). Its PET composites gave a ~1.2 fold 12 higher crystallization temperature and ~2.7 fold higher shear-induced crystallization rate over pristine 13 PET. Such nucleating effects for PET is more effective than those of non-functional T_{12} POSS and the 14 more widely studied T_8 POSS. This strategy is potentially beneficial for the high-shear melt processes of 15 PET such as spinning and film extrusion.

1 **1. Introduction**

2 Poly(ethylene terephthalate) (PET) is a versatile commercial thermoplastic polymer [1, 2], widely 3 seen in everyday life as plastic bottles or containers for foods or as fibrous clothing. PET is melt-4 processed through injection molding and extrusion blow molding to obtain desired forms such as films 5 and fibers, exhibiting exceptional processability. However, despite these advantages, the low 6 crystallization rate of PET leads to the post-shrinkage of products, retardation of melt process rate, 7 consequently leading to a decrease in mechanical properties [1, 2].

ngli injection infolding and extrusion blow motion g to obtain desired forms such
thibiting exceptional processability. However, despite these advantages,
rate of PET leads to the post-shrinkage of products, retardation of 8 To increase crystallization rate, PET is commonly copolymerized or blended with poly(butylene 9 terephthalate) (PBT) [3, 4]. However the use of the butylated form generally compromises thermal and 10 mechanical properties. Alternative strategies have entailed the introduction of nucleating agents to 11 increase the crystallization rate of PET. However, organic chemical-based nucleating agents suffer from 12 thermal degradation in PET melts as processing temperatures above the high melting point of \sim 250 °C 13 [5] are often too high for organics. Inorganic nanoparticles such as nano-clay, carbon nanotubes, and 14 nano-silica possess a high potential as nucleating agents for PET composite because they improve the 15 mechanical and thermal properties of PET [2, 6-8]. However, the critical issue about utilizing inorganic 16 nucleating agents is their poor dispersion in PET; its effects in increasing the crystallization rate have 17 proved modest [2].

18 Polyhedral oligomeric silsesquioxane (POSS) is an organic/inorganic hybrid nanoparticle and a 19 potential nucleating agent for PET. POSS contains a basic polyhedral Si-O nano-structured cage with a 20 ratio of Si:O of 1:1.5. T_8 , T_{10} , and T_{12} POSS have 8, 10, or 12 Si atoms located at the corner of the 21 cages, to which 8, 10, or 12 organic groups are attached respectively (**Fig. 1a.**) [9-11]. POSS withstands 22 the high melting temperature of PET due to the Si core, and the organic moieties of POSS can be 23 chemically conjugated to the carboxylic acid of PET chains during melt process $[12-14]$. T₈ POSS has 24 been highly reported to improve the crystallization rate of PET [10, 12, 13]. However, different types of 25 T_8 POSS have respective disadvantages as a filler of PET. The addition of epoxy functional T_8 POSS

1 increases the viscosity of PET, which possibly degrades the processability [14]. The addition of open 2 cage T_8 POSS rather retards the crystallization rate, lowering the crystallization temperature of PET 3 during the cooling trace after melting $[12]$. T₁₂ POSS has been poorly studied as the filler of PET. Thus, 4 it is worth to study the effects of T_{12} POSS on PET crystallization.

5 In this study, the effects of T_{12} POSS and its amine functional group on the crystallization behavior of 6 PET were investigated, where in-depth characterizations were also carried out to investigate the effects 7 of chemical conjugation between T_{12} POSS and PET on the homogeneity and rheological properties of 8 PET/T₁₂ POSS composites.

9

10 **2. Experimental**

11 *2.1. Materials*

the effects of T_{12} POSS and its amine functional group on the crystallization be
stigated, where in-depth characterizations were also carried out to investigate th
nigration between T_{12} POSS and PET on the homogen 12 PET was provided by SK Chemicals (SKY PET BL, SK Chemical, Korea). According to the material 13 information of SK Chemicals, its melt viscosity at 275 °C under the shear rate of 10,000 s⁻¹ is 670 poise. 14 Phenyltrimethoxysilane (Gelest, 98%), 3-aminopropyltrimethoxysilane (Gelest, 98%), and 15 tetrahydrofuran (J.T. Baker, HPLC grade) were vacuum distilled prior to use. K_2CO_3 (Sigma Aldrich, 16 99.999%) was dried at 40 $^{\circ}$ C under vacuum prior to use. All other solvents were used as received.

17

18 *2.2 Synthesis of A-POSS and N-POSS*

19 In our previous work, the facile high-yield synthesis of T_{12} POSS under mildly basic aqueous conditions 20 at room temperature was reported [15, 16]. Two types of T_{12} POSS were synthesized using a modified 21 literature procedure (**Fig. 1a**.): amine-functionalized T_{12} POSS (A-POSS) and dodecaphenyl T_{12} -phenyl 22 POSS (non-reactive POSS; N-POSS) [15, 16]. In a typical experiment, a solution of potassium 23 carbonate (0.04 g, 0.29 mmol) dissolved in distilled water (4.8 g, 0.27 mol) with 80 g of tetrahydrofuran 24 (THF) was prepared. To this solution, a mixture of phenyltrimethoxysilane (11.9 g, 60 mmol) and/or 25 either 3-aminopropyltrimethoxysilane (1.79 g, 10 mmol) was added all at once. The reaction mixture 26 was stirred vigorously at room temperature for 72 hrs. The volatiles were rotary-evaporated under

anine groups in the A-POSS is irregular. Matrix-assisted laser desorption/if

of For N-POSS and A-POSS gave m/z 1630 (PDI = 1.08) and m/z 1550 (PDI

-POSS: ¹H NMR ((CD₃)₂SO) δ -0.4 (t, 2H), δ -1.3 (m, 2H), δ -1 vacuum and precipitated in freshly distilled water to obtain a white, semi-crystalline powder, which was 2 dried under vacuum at 40 °C overnight. The obtained powders were recrystallized in a 9/1 vol/vol 3 THF/Acetonitrile solvent mixture to yield fine crystals. (12 g, 80% yield). The main structures of amine 4 functionalized T12 POSS is suggested in **Fig. 1**. The A-POSS has two amine groups on average, and the 5 position of the amine groups in the A-POSS is irregular. Matrix-assisted laser desorption/ionization 6 (MALDI-TOF) for N-POSS and A-POSS gave m/z 1630 (PDI = 1.08) and m/z 1550 (PDI = 1.08), 7 respectively. A-POSS: ¹H NMR ((CD₃)₂SO) δ=0.4 (t, 2H), δ=1.3 (m, 2H), δ=2.7 (t, 2H), δ=6.5-8.0 (m, 35H). N-POSS ¹H NMR (THF-*d8*) δ=7.4 (t, 1H), δ=7.2 (t, 2H), δ=7.1 (d, 2H). $M_n = 1,300$, PDI = 1.10 9 (A-POSS); $M_n = 1,300$, PDI = 1.06 (N-POSS). In our previous report, dilute solution small-angle X-ray 10 scattering (SAXS) and microscopic analysis for T_{12} POSS were unable to give its particle size because 11 the size of T12 POSS is too small [16]. However, a typical size of T_{12} POSS is estimated to have 1-3 nm 12 in consideration of the bond length of Si-O and C-C [17]. Supplementary information includes Fourier-13 transform infrared spectroscopy (FT-IR) data of A-POSS and N-POSS (**Fig. S1.**) [15, 16].

14

15 *2.3. Characterization*

16 X-ray photoelectron spectroscopy (XPS) studies were performed with PHI 5800 ESCA system (Physical Electronics, Chanhassen, MN, USA) at $2x10^{-10}$ torr with a monochromatic Al K α (1486.6 eV) 18 anode (250W, 10kV, 27mA). Onset melting temperature, glass transition temperature (T_g) , and 19 crystallization temperature were investigated on a differential scanning calorimeter (DSC) (TA 20 Instrument DSC model Q20, New Castle, DE, USA). The specimens were heated up to 300 °C at a 21 heating rate of 20 °C/min, held in the molten state for 5 min, then cooled down to 30 °C at a cooling rate 22 of 10 °C/min in nitrogen atmosphere. Rheological properties were measured by an advanced rheometric 23 expansion system (TA Instrument, New Castle, DE, USA). Parallel plate geometry with a diameter of 24 25 mm was employed in an oscillatory mode. The plate gap and strain level were 1 mm and 10%, 25 respectively. To determine shear-induced crystallization time, the fully melted samples were cooled 26 down to 220 °C, and then the time dependent dynamic storage modulus of the samples were measured

II-TOF MS data were obtained using a 4800 MALDI-TOF/TOF analyzer (Vo_!

on, Applied Biosystems) with dithranol and NaCI mixture as the marrix and i

tively. The spectra were recorded using linear ion mode irradiated unde 1 with the angular frequency (ω) of 0.5 at 220 °C. The specimen was melted at 280 °C between the 2 parallel plates and the excess flushed-out sample during gap-setting was trimmed off. Frequency sweep 3 measurements were conducted at 280 °C. The Si atom mapping image of PET composites surfaces were 4 obtained using a field emission electron probe microanalyzer (FE-EPMA) (JXA-8500F, JEOL, Tokyo, 5 Japan). MALDI-TOF MS data were obtained using a 4800 MALDI-TOF/TOF analyzer (Voyager DE 6 STR workstation, Applied Biosystems) with dithranol and NaCl mixture as the matrix and ionization 7 dopant, respectively. The spectra were recorded using linear ion mode irradiated under high vacuum. 8 Wide angle X-ray scattering analysis (WAXS) was conducted with a Rigaku, ATX-G high resolution 9 diffractometer employing Ni-filtered Cu K radiation. Dried sample films were mounted on an aluminum 10 sample holder, and scanning angle was varied from 5 to 55° at a scanning rate of $5^{\circ}/$ min. All spectra 11 were measured at ambient temperature.

12

13 *2.4. Fabrication of PET/POSS Composites*

14 The two types of PET/T_{12} POSS composites were prepared using A-POSS or N-POSS. PET and T_{12} 15 POSS were dried at 80 °C for 24 h and tumbled in a bag, then followed by melt-compounding in an 16 internal mixer (Haake Rheomix-600, Leawood, KS, USA) for 5 min at 280 °C at a rotor speed of 50 17 rpm. The samples were cryogenically ground into fine powder, then the powder was melt-processed to 18 films using hot pressing molding. The samples are listed in **Table 1**.

19

20 **3. Results and Discussion**

21 *3.1. Conjugation of functionality between PET and POSS*

22 The amine group of A-POSS reacts with the carboxylic acid of PET. Thus, the A-POSS was 23 chemically conjugated to PET chains. The chemical reaction between A-POSS and PET i.e. amide bond 24 formation was characterized by XPS (**Fig. 1b.**). The carbon (C) 1s XPS spectrum of PET showed four 25 distinctive peaks. The main peak at \sim 284.7 eV is assigned to the C-C/C-H of terephthalate rings, the 26 peak at \sim 286.4 eV assigned to the -**C**H₂-O of ester, the peak at \sim 288.6 eV is assigned to -(**C**=O)-O of

1 PET matrix than N-POSS [12, 13]. Meanwhile, the other all peaks of both A-POSS and N-POSS 2 composites with the range of 10 to 50º correspond with those of pristine PET, suggesting that the two 3 different T_{12} POSS do not affect PET crystal structure.

4

5 *3.2. Thermal properties of PET composites*

roperties of PET composites

of the chemically conjugated A-POSS on the thermal properties of PET were inv

3. And Fig. S3.). The crystallization temperature and heat of crystallization of

so were obtained during the c 6 The effects of the chemically conjugated A-POSS on the thermal properties of PET were investigated 7 by DSC (**Fig. 3. And Fig. S3.**). The crystallization temperature and heat of crystallization of PET and 8 PET composites were obtained during the cooling trace (**Fig. 3a, b.**). Pristine PET has a crystallization 9 temperature of approximately 141 °C. As shown, the effects of N-POSS and A-POSS incorporation 10 increased the crystallization temperature of PET up to \sim 165 and \sim 176 °C, respectively. These results 11 suggest that T_{12} POSS plays a role of nucleating agent and the chemically conjugated A-POSS forms 12 more well-dispersed nuclei in the PET matrix. Moreover, our T_{12} POSS was more effective as 13 nucleating agent for PET than T₈ POSS, which shows an approximate 5 °C fall or 6-23 °C rise in the 14 crystallization temperature [12, 13, 21]. This was attributed to the fact that T_{12} POSS particles are more 15 poorly packed with each other than T_8 POSS particles because T_{12} POSS particles have lower symmetry 16 T_8 POSS particles [22, 23]. Therefore T_{12} POSS gives greater interfacial area with PET where 17 heterogonous nucleation occurs. In addition, the heat of crystallization data showed a similar tendency 18 with the crystallization temperature, as T_{12} POSS-induced nuclei increased the crystallinity of PET.

19 The T_g and onset melting temperature of PET composites were obtained during the second heating 20 trace (**Fig. 3c, d.**). T_g increases with the content of T_{12} POSS because the inorganic nanoparticles restrict 21 the molecular motion of PET chain ends. The A-POSS composites showed higher T_g values over the N-22 POSS composites due to the relatively more homogeneous dispersion of the A-POSS particles. Onset 23 melting temperature decreases with the content and the dispersibility of T_{12} POSS probably because of 24 the decreased crystal size [13, 21].

1 **Fig. 3.** (a) Crystallization temperature and (b) heat of crystallization of A-POSS and N-POSS PET 2 composites during the cooling trace. (c) Glass transition temperature (T_g) and (d) onset melting 3 temperature of A-POSS and N-POSS PET composites during the second heating trace. The data were 4 obtained using a differential scanning calorimetry (DSC). The data of triple samples represent mean \pm 5 standard deviation.

6

7 *3.3. Dynamic crystallization rate of PET composites*

ion.

Signalization rate of PET composites

the effects of the chemically conjugated A-POSS on the crystallization rate of PI

g process and an injection process, the shear-induced crystallization time of

re measured by 8 To evaluate the effects of the chemically conjugated A-POSS on the crystallization rate of PET within 9 a melt spinning process and an injection process, the shear-induced crystallization time of the PET 10 composites were measured by dynamic rheological measurements. The samples were fully melted at 11 280 °C, then time sweep measurements were conducted over the angular frequency (ω) of 0.5 at 220 °C 12 under inert nitrogen atmosphere. In the general G'-time plot of PET composites, the G' gradually 13 increases with time and saturates when the crystallization reaches an equilibrium (**Fig. 4a.**) [21]. The 14 shear-induced crystallization time was determined by the time difference between the abrupt G' increase 15 and the level-off point. The addition of T_{12} POSS decreases the shear-induced crystallization time up to 16 \sim -34% of that of pristine PET, supporting the notion that T₁₂ POSS is a more effective nucleating agent 17 for PET than T_8 POSS which decreases the shear-induced crystallization time up to ~60% of that of 18 pristine PET [21]. The A-POSS composites have shorter shear-induced crystallization time than the N-19 POSS composites. The shear-induced crystallization time of the A-POSS composite reaches saturation 20 at <0.5 wt. %, while that of the N-POSS composites gradually decreases with the T_{12} POSS content in 21 the examine region (**Fig. 4b.**). These results are probably because the well-dispersed A-POSS induces a 22 higher number of the collisions between the nuclei and the polymer chain [24]. Thus, the addition of A-23 POSS may effectively reduce the post-shrinkage of PET products and the retardation of PET molding 24 process over N-POSS.

1 **Fig. 4.** (a) Dynamic storage modulus (G') versus time of PET composite melts over the angular 2 frequency (ω) of 0.5 at 220 °C. (b) Shear-induced crystallization time (or dynamic crystallization time) 3 of PET composites at 220 °C. The data of triple samples represent mean \pm standard deviation with 4 statistical significance $[$ * p < 0.05, not significant (NS) p > 0.05 ; unpaired t-test).

5

6 *3.4. Tensile properties of PET composites*

7 To evaluate the effects of the chemically conjugated A-POSS on the mechanical properties of PET, the 8 tensile properties of the PET composites were measured (**Table 2**). It was found that the addition of T_{12} 9 POSS increases the Young's modulus and tensile strength due to the increased crystallinity. Moreover, 10 the A-POSS composites showed higher Young's moduli and tensile strength values than the N-POSS 11 composites because of the higher crystallinity induced nucleating effect.

12

13 **Table. 2.** Tensile mechanical properties of PET, A15, and N15. The data of triple samples represent 14 mean \pm standard deviation.

15

16 *3.5. Rheological properties of PET composite melts*

operties of PET composites

e effects of the chemically conjugated A-POSS on the mechanical properties of

es of the PET composites were measured (Table 2). It was found that the additi

sthe Young's modulus and tensile st 17 To evaluate the melt processing stability of the PET composites, the rheological properties of PET and 18 their composites with T_{12} POSS were examined at 280 °C. The dynamic viscosity (η')-angular 19 frequency (ω) plots of the melted PET, A15, and N15 are presented in **Fig. 5a**. While the A15 shows a 20 more comparable η' pattern with pristine PET in the examined ω range, the N15 shows the higher η' 21 pattern than the pristine PET in the low ω range. It suggests that the aggregation of N-POSS particles 22 interrupts the smooth flow of PET melt [21, 25]. The linear master curve of G' versus loss modulus (G") 23 logarithmic plots i.e. Cole-Cole plot indicates a homogeneous and isotropic polymer melt (**Fig. 5b.**) [21, 24 25]. The Cole-Cole plot of A15 gives relatively less scattering of data points to that of PET, while the 25 plot of N15 gives the notable deviation of data points and data slopes compared with that of PET. The 26 tendency of the η' and Cole-Cole plots suggests that the A-POSS particles has little effect on the

1 homogeneity of the system probably due to the low degree of aggregation. However, the incorporation 2 N-POSS into PET gives a considerable increase in the degree of heterogeneity of the PET melt system 3 due to the aggregation of N-POSS. It suggests that the chemical conjugation between PET and POSS 4 could improve the melt processing stability of PET/POSS composites [26].

5

6 **Fig. 5.** (a) The complex viscosity (η') versus angular frequency (ω) plots of PET composite melts at 280

^oC. (b) The linear master curve of storage modulus (G') versus loss modulus (G'') logarithmic plots.

8

9 **4. Conclusions**

complex viscosity (η)') versus angular frequency (ω) plots of PET composite me
inear master curve of storage modulus (G') versus loss modulus (G') logarithmic
inear master curve of storage modulus (G') versus loss m 10 An aminopropyl functionalized T_{12} POSS (A-POSS) has been studied as a nucleating agent for PET in 11 comparison with a type of non-functional fully phenyl-substituted T_{12} POSS (N-POSS) and previously 12 reported T_8 POSS. The aminopropyl groups of A-POSS allowed for chemically conjugation to the PET 13 chains, giving a more homogeneous dispersion in PET matrix than that of N-POSS. Moreover, the 14 addition of A-POSS functioned to increase crystallization temperature and the shear-induced 15 crystallization rate of PET than N-POSS and previously reported T_8 POSS. In addition, A-POSS 16 improved the thermal and tensile properties of PET in terms of T_g , Young's modulus, and tensile 17 strength. Rheological studies revealed that the A-POSS has less effect on the homogeneity of PET melt 18 within melt processes than non-functional T_{12} POSS due to the reduced particle aggregation.

19

20 **Acknowledgement**

21 This work was financially supported by the Technology Innovation Program (10070150) funded By the 22 Ministry of Trade, Industry & Energy (MOTIE, Korea), and partially supported by a grant from 23 Research Center for Chemical Biotechnology of Korea Research Institute of Chemical Technology (SI 24 1709).

- 1 (10) N. C. Escudé, E. Y. –X. Chen, Stereoregular methacrylate-POSS hybrid polymers: syntheses and 2 nanostructured assemblies, Chem. Mater. 21 (2009) 5743-5753.
- 3 (11) A. S. Lee, S. S. Choi, S. Y. Oh, H. S. Lee, B. Kim, S. S. Hwang, K. Y. Baek, Incompletely 4 condensed POSS-based spin-on-glass networks for impeccable ultra low-*k* integration, J. Mater. 5 Chem. C. 3 (2015) 11605-11611.
- 6 (12) F. C. L. Ciolacu, N. R. Choudhury, N. Dutta, E. Kosior, Molecular level stabilization of 7 poly(ethylene terephthalate) with nanostructured open cage trisilanolisobutyl-POSS, 8 Macromolecules. 40 (2007) 265-272.
- 9 (13) H. –U. Kim, Y. H. Bang, S. M. Choi, K. H. Yoon, Morphology and mechanical properties of 10 PET by incorporation of amine-polyhedral oligomeric silsesquioxane, Comp. Sci. Technol. 68 11 (2008) 2739-2747.
- 12 (14) K. H. Yoon, M. B. Polk, J. H. Park, B. G. Min, D. A. Schiraldi, Properties of poly(ethylene 13 terephthalate) containing epoxy-functionalized polyhedral oligomeric silsesquioxane, Polym. Int. 14 54 (2005) 47-53.
- 3 (2015) 11605-11611.

2. Ciolacu, N. R. Choudhury, N. Dutta, E. Kosior, Molecular level stabilier

terephthalate) with nanostructured open cage trisilanolisobut

lecules. 40 (2007) 265-272.

Kim, Y. H. Bang, S. M. Choi, K 15 (15) A. S. Lee, S. –S. Choi, H. S. Lee, K. Y. Baek, S. S. Hwang, S. S, A new, higher yielding 16 synthetic route towards dodecaphenyl cage silsesquioxanes: synthesis and mechanistic insights, 17 Dalton Trans. 41 (2012) 10585-10588.
- 18 (16) S. –S. Choi, A. S. Lee, S. S. Hwang, K. Y. Baek, Structural control of fully condensed 19 polysilsesquioxanes: ladderlike vs cage structured polyphenylsilsesquioxanes, Macromolecules. 20 48 (2015) 6063-6070.
- 21 (17) G. Li, L. Wang, H. Ni, C. U. Pittman Jr., Polyhedral oligomeric silsesquioxane (POSS) polymers 22 and copolymers: A review, J. Inorg. Organomet. Polym. 11 (2011) 123-154.

- 5 (19) K. H. Hong, K. W. Oh, T. J. Kang, Polyaniline–nylon 6 composite fabric for ammonia gas 6 sensor, J. Appl. Polym. Sci. 92 (2004) 37-42.
- 7 (20) Y. M. Ha, T. Amna, M. H. Kim, H. C. Hassan, M. S. Khil, Novel silicificated PVAc/POSS 8 composite nanofibrous mat via facile electrospinning technique: Potential scaffold for hard tissue 9 engineering, Colloids Surf. B. 102 (2013) 795-802.
- 10 (21) S. J. Lee, W. G. Hahm, T. Kikitani, B. C. Kim, Effects of clay and POSS nanoparticles on the 11 quiescent and shear-induced crystallization behavior of high molecular weight poly(ethylene 12 terephthalate), Polym. Eng. Sci. 49 (2009) 317-323.
- Hong, K. W. Oh, T. J. Kang, Polyamiline-nylon 6 composite fabric for anni-
Appl. Polym. Sci. 92 (2004) 37-42.

Ha, T. Amna, M. H. Kim, H. C. Hassan, M. S. Khil, Novel silicificated PV.

Ha, T. Amna, M. H. Kim, H. C. Hassa 13 (22) V. Ervithayasuporn, S. Chimjarn, Synthesis and isolation of methacrylate- and acrylate-14 functionalized polyhedral oligomeric silsesquioxanes $(T_8, T_{10}$, and T_{12}) and characterization of the 15 relationship between their chemical structures and physical properties, Inorg. Chem. 52 (2013) 16 13108-13112.
- 17 (23) J. C. Furgal, J. H. Jung, T. Goodson III, R. M. Laine, Analyzing structure-photophysical 18 property relationships for isolated T_8 , T_{10} , and T_{12} stilbenevinylsilsesquioxanes, J. Am. Chem. Soc. 19 135 (2013) 12259-12269.
- 20 (24) S. –I. Han, J. S. Lim, D. K. Kim, M. N. Kim, S. S. Im, *In situ* polymerized poly(butylene 21 succinate)/silica nanocomposites: Physical properties and biodegradation, Polym. Degrad. Stab. 93 22 (2008) 889-895.

- 1 (25) E. S. Kim, B. C. Kim, S. H. Kim, Structural effect of linear and star-shaped poly(L-lactic acid) 2 on physical properties, J. Polym. Sci. Part B: Polym. Phy. 42 (2004) 939-946.
- 3 (26) Y. P. Jeon, C. L. Cox, Modeling of multifilament PET fiber melt-spinning, J Appl. Polym. Sci. 4 110 (2008) 2153-2163.

MANUSCRIPT

- 5
- 6

1

2 **Fig. 1.** Schematic illustration of (a) non-reactive, (b) amine-functionalized T_{12} POSS (A-POSS), and (c) 3 conjugation reaction between PET and A-POSS. (d) XPS C 1s spectra of PET and A05 composite. (e) 4 XPS N 1s spectra of A-POSS and A05 composite.

- 5
- 6

1 **Table 1.** Sample list of PET and PET/T₁₂ POSS composites.

2 **Fig. 2.** FE-EPMA Si mapping images of PET/T₁₂ POSS composites: (a) A05 and (b) N05.

3

1

MAN SI mapping images of PET/T₁₂ POSS composites: (a) A05 and (b) N05.

2 **Fig. 3.** (a) Crystallization temperature and (b) heat of crystallization of A-POSS and N-POSS PET 3 composites during the cooling trace. (c) Glass transition temperature (T_g) and (d) onset melting 4 temperature of A-POSS and N-POSS PET composites during the second heating trace. The data were 5 obtained using a differential scanning calorimetry (DSC). The data of triple samples represent mean \pm 6 standard deviation.

7

2

3 **Table 2.** Tensile mechanical properties of PET, A15, and N15. The data of triple samples represent

4 mean \pm standard deviation.

AND $\frac{1}{20}$ and $\frac{1}{2$ 2 **Fig. 4.** (a) Dynamic storage modulus (G') versus time of PET composite melts over the angular 3 frequency (ω) of 0.5 at 220°C. (b) Shear-induced crystallization time (or dynamic crystallization time) 4 of PET composites at 220 °C. The data of triple samples represent mean \pm standard deviation with 5 statistical significance $[$ * p < 0.05, not significant (NS) p > 0.05; unpaired t-test).

 $\frac{1}{2}$ 2 **Fig. 5.** (a) The complex viscosity (η') versus angular frequency (ω) plots of PET composite melts at 280

