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aUniversité Paris-Est, Laboratoire de Modélisation et Simulation Multi Echelle, FRE 3160, CNRS, 5 Boulevard Descartes,

F-77454 Marne-la-Vallée Cedex 2, France
bCentre Scientifique et Technique du Bâtiment (CSTB), 84 Avenue Jean Jaurès, 77447 Marne-la-Vallée Cedex 2, France

Accepted 11 January 2008

Available online 26 March 2008
Abstract

A reinforced pin-loaded joint used to assemble elements in a tempered glass structure consists of a steel bolt and a steel ring glued to a

glass plate through an adhesive resin layer. The stiffness of a typical resin material is generally much lower than the stiffness of steel or

glass. This fact leads us to make the assumption that the stress field in the adhesive resin layer is essentially due to the relative rigid

displacements of the steel ring with respect to the glass plate. On the basis of this assumption, an analytical solution is obtained for the

stresses in the adhesive resin layer. This solution is compared with and validated by the numerical results obtained by the finite element

method.

r 2008 Elsevier Ltd. All rights reserved.
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1. Introduction

In tempered glass structures, pin-loaded connections are
frequently employed to assemble different glass elements
and ensure the structure integrity. The reinforced pin-
loaded joint studied in the present work is composed of
a steel bolt (or pin), a steel ring and a thin resin layer
(see Fig. 1). The steel ring serves for strengthening the hole
in a tempered glass plate and is glued to the latter via the
resin layer. An external force is transmitted from the steel
bolt to the glass plate through the steel ring and the resin
layer. Thus, the steel ring is in direct contact with the
steel bolt and prevents the glass plate from high stress
concentration.

Pin-loaded connections have been widely and intensively
studied (see [1–3] and the references cited therein).
However, the stress analysis of the adhesive layers involved
in finite structures with pin-loaded connections seems not
to have been carried out analytically. This is probably
because the finiteness of these structures renders it
e front matter r 2008 Elsevier Ltd. All rights reserved.
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particulary difficult or even impossible to obtain analytical
solutions. By contrast, when plates with pin-loaded
connections are infinite, certain analytical solutions are
available (see, e.g., [4–7]).
The stiffness and strength of the resin constituting a

typical thin adhesive layer are much lower than those of the
materials (steel and glass) forming the ring and plate.
Experimental observations indicate that cracks in the
reinforced pin-loaded joint of a tempered glass plate are
mostly initiated inside the thin adhesive layer or at its
interfaces with the ring and plate (Fig. 2). Consequently,
the stress analysis of the thin adhesive resin layer prior to
the occurrence of cracks is essential for preventing the
reinforced pin-loaded joint from failure.
The main purpose of this work is to obtain a closed-form

solution for the stress field inside the thin adhesive layer.
This objective is achieved by exploiting the fact that the
resin of which the thin layer is made is much softer than
steel and glass. Typically, the Young modulus of the resin
is hardly superior to 3GPa while those of glass and steel
are about 70 and 200GPa, respectively. Due to this high
stiffness contrast, we infer that, to within terms of high
orders, the strain field in the adhesive layer is generated by
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Fig. 1. Composition of a typical reinforced pin-loaded joint in a glass

structure.

Fig. 2. Failure of the resin of a reinforced pin-loaded joint with the pin

put aside.
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the relative rigid displacements of the steel ring with respect
to the glass plate. In other words, in determining the stress
field in the adhesive layer, the ring and plate can be
practically taken to be rigid. This assumption considerably
simplifies the stress analysis of the adhesive layer in a finite
structure involving unilateral contact and friction which
are strongly nonlinear phenomena. Indeed, as the ring and
glass are considered as rigid, the structure under investiga-
tion behaves as an infinite one and the stress field in the
adhesive layer does not depend on the exact distribution of
the contact stresses on the surface between the bolt and
ring but only on the resulting forces of the contact stresses.
To check the validity of the assumption that the steel ring

and glass plate act practically as being rigid in analyzing the
stresses in the adhesive layer, the finite element method is
applied to a glass structure with a reinforced pin-loaded joint
where the ring and plate are taken to be linearly isotropic
elastic. The results given by our analytical solution for the
stresses in the adhesive layer are compared with the relevant
results provided by a full numerical simulation based on the
finite element method. This comparison shows a good
agreement between the results delivered by our analytical
solution and the ones issued from the numerical method.
The paper is organized as follows. Section 2 specifies the

problem under investigation and determines the stress field
inside the adhesive layer by using the aforementioned
relative rigid displacement hypothesis. The analytical
results derived in Section 2 are compared against and
validated by the numerical results obtained by the finite
element method in Section 3. A few concluding remarks are
drawn in Section 4.

2. Analytical solution for the stress field in the adhesive resin

layer

Consider a reinforced pin-loaded joint whose composi-
tion is shown in Fig. 1. The components of the joint and
their dimensions relative to a system of polar coordinates
are specified as follows:
�
 the steel bolt: 0prpR0;

�
 the steel ring: R1prpR2;

�
 the adhesive resin layer: R2prpR3;

�
 the glass plate: rXR3.
Before the occurrence of cracks or plastic strains, the
materials constituting the pin, ring, resin and glass are
all taken to be linearly elastic and isotropic, so that it is
characterized by the Young modulus Ei and Poisson ratio ni

with i ¼ 0; 1; 2; 3 for the pin, ring, resin and glass,
respectively. In what follows, we make the assumption of
plane elasticity. Thus, it is convenient to introduce Kolosov’s
constants ki and mi related to Ei and ni by the expressions

mi ¼
Ei

2ð1þ niÞ
; ki ¼

3� ni

1þ ni

ðplane stressÞ,

ki ¼ 3� 4ni ðplane strainÞ.

According as ki ¼ ð3� niÞ=ð1þ niÞ or ki ¼ 3� 4ni is
adopted, the results presented below are valid for the case
of plane stress or plane strain. The glass structure under
investigation complies with the hypothesis of plane stress.
As argued in the Introduction, owing to the fact that

the adhesive resin layer is very soft in comparison with the
glass plate and steel reinforcement ring, the determination
of the stress field inside the resin layer can be carried out by
considering the glass plate and steel ring as rigid bodies. In
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Fig. 3. Boundary conditions for the adhesive resin layer.
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other words, their interfaces with the resin layer can be
admitted as undeformable and the stress field inside the
resin layer depends only on their relative displacements (i.e.
relative translation and rotation) caused by external
loadings. So, let us examine the case where the resultant
forces transmitted from the bolt to the ring correspond to a
horizontal force P and a moment M applied at the origin
O, which cause a relative horizontal translation d and a
relative rotation o between the two interfaces (see Fig. 3).
The boundary conditions for the resin layer can be written
in the polar coordinate system as follows:

urðR3; yÞ ¼ uyðR3; yÞ ¼ 0; 8y 2 ½�p;p�,

urðR2; yÞ ¼ d cos y,

uyðR2; yÞ ¼ oR2 � d sin y; 8y 2 ½�p; p�. (1)

Under these boundary conditions, a stress function of
Michell’s type [8] is proposed for the resin layer
(R2prpR3) as follows:

f ¼ C0yþ C1r3 cos yþ C2ry sin y

þ C3r ln r cos yþ C4r
�1 cos y. (2)

From this stress function we derive the stress field

srrðr; yÞ ¼
1

r

qf
qr
þ

1

r2
q2f

qy2

¼ ð2C1rþ 2C2=rþ C3=r� 2C4=r3Þ cos y,

sryðr; yÞ ¼
1

r2
qf
qy
�

1

r

q2f
qr qy

¼ C0=r2 þ ð2C1rþ C3=r� 2C4=r3Þ sin y,

syyðr; yÞ ¼
q2f
qr2
¼ ð6C1rþ C3=rþ 2C4=r3Þ cos y. (3)

The associated displacement field reads

urðr; yÞ ¼
cos y
2m2

C1ðk2 � 2Þr2 þ
1

2
ððk2 þ 1Þ ln r� 1ÞC2

�

þ
1

2
ððk2 � 1Þ ln r� 1ÞC3 þ C4r�2

�

þ
y sin y
2m2
½C2ðk2 � 1Þ þ C3ðk2 þ 1Þ� þ

C5

2m2
cos y,

uyðr; yÞ ¼ �
C0

2m2
r�1 þ

sin y
2m2

C1ðk2 þ 2Þr2
�

�
1

2
ððk2 þ 1Þ ln rþ 1ÞC2

�
1

2
ððk2 � 1Þ ln rþ 1ÞC3 þ C4r

�2

�

þ
y cos y
2m2

½C2ðk2 � 1Þ þ C3ðk2 þ 1Þ�

�
C5

2m2
sin yþ

C6

2m2R3
. (4)

The chapters 8 and 9 in the book of Barber [8] give
a detailed presentation of the way in which we have
deduced the stress field (3) and displacement field (4) from
the stress function (1). For the paper to be self-contained,
the Michell stress function method is briefly recalled in
Appendix A.
The terms C5=ð2m2Þ and C6=ð2m2R3Þ in (4) represent a

horizontal rigid translation and a rigid rotation due to the
use of a stress function. The requirement that ur and uy be
periodical with respect to y, i.e.,

urðr; yÞ ¼ urðr; yþ 2pÞ; uyðr; yÞ ¼ uyðr; yþ 2pÞ,

leads to the demand that the terms y cos y and y sin y in (4)
vanish:

C2ðk2 � 1Þ þ C3ðk2 þ 1Þ ¼ 0: (5)

Using the boundary conditions (1) in (4) while accounting
for (5), we obtain a system of linear equations for
determining the coefficients Ci ði ¼ 1; 2; . . . ; 5Þ:

C1ðk2 � 2ÞR2
2 þ

C2

2
½ðk2 þ 1Þ lnR2 � 1�

þ
C3

2
½ðk2 � 1Þ lnR2 � 1� þ C4R�22 þ C5 ¼ 2dm2;

C1ðk2 þ 2ÞR2
2 �

C2

2
½ðk2 þ 1Þ lnR2 þ 1�

�
C3

2
½ðk2 � 1Þ lnR2 þ 1� þ C4R�22 � C5 ¼ �2dm2;

C1ðk2 � 2ÞR2
3 þ

C2

2
½ðk2 þ 1Þ lnR3 � 1�

þ
C3

2
½ðk2 � 1Þ lnR3 � 1� þ C4R�23 þ C5 ¼ 0;

C1ðk2 þ 2ÞR2
3 �

C2

2
½ðk2 þ 1Þ lnR3 þ 1�

�
C3

2
½ðk2 � 1Þ lnR3 þ 1� þ C4R�23 � C5 ¼ 0;

C2ðk2 � 1Þ þ C3ðk2 þ 1Þ ¼ 0;

C0 � C6 ¼ 0;

C6=R3 � C0=R2 ¼ 2m2oR2:

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

(6)
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With the notation r ¼ ðR3=R2Þ
2, the solution for the

system (6) is given by

C1 ¼
2dm2

R2
2ð2r� k22r ln r� 2� k22 ln rÞ

,

C2 ¼
2ðk2 þ 1Þð1þ rÞk2dm2

2r� k22r ln r� 2� k22 ln r
,

C3 ¼ �
2ðk2 � 1Þð1þ rÞk2dm2

2r� k22r ln r� 2� k22 ln r
,

C4 ¼
2R2

2rk2dm2
2r� k22r ln r� 2� k22 ln r

,

C5 ¼
4dm2ðk2ðrþ 1Þ lnR3 � rÞ
2r� k22r ln r� 2� k22 ln r

,

C0 ¼ C6 ¼ �
2m2oR2

2R3

R3 � R2
. (7)

However the stress field (3) must be in equilibrium with the
external forces, i.e the horizontal force P and the moment
M with respect to the origin O. Hence, we have

Z p

�p
ðsrr cos y� sry sin yÞrdyþ P ¼ 0,

Z p

�p
sryr

2 dyþM ¼ 0.

These two equations provide

C2 ¼ �
P

2p
; C0 ¼ �

M

2p
. (8)

By combining these two equations with the second and last
formulae in (7), we can determine the translation d and
rotation o in terms of P and M:

d ¼
ðk22r ln rþ 2þ k22 ln r� 2rÞ

4pðk2 þ 1Þð1þ rÞk2m2
P; o ¼

ðR3 � R2Þ

4pm2R2
2R3

M,

(9)

or equivalently,

P

d
¼

4pðk2 þ 1Þð1þ rÞk2m2
k22r ln rþ 2þ k22 ln r� 2r

;
M

oR2
3

¼
4pm2

r�
ffiffiffi
r
p . (10)

The terms on the right-hand sides of the foregoing
formulae represent the translational stiffness and normal-
ized rotational stiffness, which depend only on the material
constants and normalized geometrical parameter r.
Table 1

Non-zero coefficients used in the analytical stress solution (Eq. (3)) for the ad

R2 (mm) R3 (mm) k2 P (N/mm)

45 60 2.333 1000

30 60 2.333 1000
Then, the other coefficients Ci (i ¼ 1; 3; 4; 5; 6) in (3) can
be all determined in terms of M and P as follows:

C1 ¼ �
P

2pR2
2ðk2 þ 1Þð1þ rÞk2

,

C3 ¼
ðk2 � 1ÞP

2pðk2 þ 1Þ
; C4 ¼ �

rPR2
2

2pðk2 þ 1Þðrþ 1Þ
,

C5 ¼ �
Pðk2ðrþ 1Þ lnR3 � rÞ
pðk2 þ 1Þð1þ rÞk2

; C6 ¼ �
M

2p
. (11)

When the contact of the bolt and ring is frictionless, the
contact stress vector acting on the contact surface is normal
to the latter and passes through the origin, creating a zero
moment with respect to it (viz. the moment M ¼ 0). Then,
the coefficients C0, C6 and o become zero. Generally
speaking, the foregoing analytical solution remains valid
even for the case where the contact between the bolt and
ring is frictional but the bolt does not roll, i.e. the resultant
moment of the frictional stresses with respect to the bolt
center is null.

3. Numerical simulation and validation

To check the validity of the analytical solution derived
above, we apply this solution and use the finite element
method (FEM) to make the plane stress analysis of a glass
plate of dimension 200mm� 200mm� 19mm with a
reinforced pin-loaded joint. The external force is a
concentrated force applied at the center of the bolt. The
other parameters and conditions used in our analysis are
listed below:
�

hes

C

�

�

Geometric parameters: R0 ¼ 15mm, R1 ¼ 15mm, R2 ¼

30mm or 45mm, R3 ¼ 60mm, L ¼ 200mm (width and
length of the glass plate), e ¼ 19mm (thickness of the
glass plate);

�
 Bolt (rpR0): E0 ¼ 200GPa, n0 ¼ 0:3;

�
 Ring (R1prpR2): E1 ¼ 200GPa, n1 ¼ 0:3;

�
 Resin layer (R2prpR3): E2 ¼ 0:2; 0:5; 1 or 2GPa,

n2 ¼ 0:2;

�
 Glass plate (R3pr and jxjpL=2 and jyjpL=2):

E3 ¼ 70GPa, n3 ¼ 0:2;

�
 Total force: F ¼ Fx ¼ 19 kN applied at the center of the

bolt;

�
 Force per unit thickness: P ¼ F=e ¼ 1 kN=mm;

�
 Boundary conditions: uxðx ¼ �L=2; yÞ ¼ 0, uyðx; y ¼ 0Þ
¼ 0;

�
 Frictionless contact between the bolt and ring: M ¼ 0.

Among the above parameters, E2 varies from 0.2 to
2GPa and R2 is equal to 30 or 45mm.
ive resin layer

1 C2 C3 C4

3.638E�3 �159.155 63.662 �61879

4.547E�3 �159.155 63.662 �34377
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Fig. 4. Mesh of a reinforced pin-loaded joint in a glass structure.

Radial stress σrr (r=R2=45,θ) 
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Fig. 5. Normal stress component srr at the surface r ¼ R2 ¼ 45mm.

Tangential stress σrθ (r=R2=45,θ) 
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Fig. 6. Tangential stress component sry at the surface r ¼ R2 ¼ 45mm.

Radial stress σrr (r,θ=2π) 

0

1

2

3

4

5

6

45 50 55 60

Distance r from the origin [mm]

St
re

ss
 [M

Pa
]

Srr analytic
Num E=2GPa
Num E=1GPa
Num E=0.5GPa
Num E=0.2GPa

Fig. 7. Radial stress component srrðr; y ¼ 2pÞ with R2oroR3

(R2 ¼ 45mm).
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The analytical stress solution for the resin layer of the glass
structure under consideration is provided by Eq. (3) in
which the expressions of the coefficients Ci are specified by
Eq. (10). Since M ¼ 0, it is immediate that C0 ¼ 0. The
values of the remaining coefficients Ci (i ¼ 1; 2; 3; 4) for
the adhesive resin layer are calculated and presented in
Table 1. The problem under investigation is linearly elastic,
so that, in particular, the coefficients Ci (i ¼ 1; 2; 3; 4) are
proportional to the load P with the proportionality
constants depending only on the geometrical and material
parameters of the resin layer. In addition, according to
Eq. (3), for a given radius r, the normal stress components
srr and syy are cosinusoidal functions of y while the tangent
stress component sry is a sinusoidal function of y. The
normal stress srr and tangent stress sry acting on the
surface between the adhesive resin layer and the steel ring
are plotted in Figs. 5, 6, 8 and 9 for R2 ¼ 45 and 30mm
and for the four values of E2 ranging from 0.2 to 2GPa.
The variation of the corresponding radial stress srr along
the radial direction is depicted in Figs. 7 and 10.

Next, the glass structure with a pin-loaded joint is
analyzed by MSC MARC, a robust Finite Element
Program with advanced features for contact problems
(see [9]). The mesh of a quarter of the structure, shown in
Fig. 4, consists of 2295 in-plane four-node isoparametric
elements and comprises 2429 nodes each of which has two
degrees of freedom. All the components of the structure are
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Radial stress σrr (r=R2=30,θ) 
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Fig. 8. Normal stress component srr at the surface r ¼ R2 ¼ 30mm.

Tangential stress σrθ (r=R2=30,θ) 
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Fig. 9. Tangential stress component sry at the surface r ¼ R2 ¼ 30mm.
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Fig. 10. Radial stress component srrðr; y ¼ 2pÞ with R2oroR3

(R2 ¼ 30mm).
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Fig. 11. Normal contact stress on the bolt-ring surface for the case

R2 ¼ 45mm.
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Fig. 12. Normal contact stress on the bolt-ring surface for the case

R2 ¼ 30mm.
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taken to be deformable. The numerical results for srr and
sry on the surface between the adhesive resin layer and the
steel ring are plotted also in Figs. 5–10 for R2 ¼ 45 and
30mm. The variation of srr along r is shown in Figs. 7 and
10. Furthermore, the distribution of the contact stress on
the surface between the steel bolt and ring is illustrated in
Figs. 11 and 12 for the aforementioned four values of E2.
Comparing the analytical results and those obtained by
FEM, we can draw the following conclusions:
�
 The analytical solution gives a good approximation for
the stress field in the resin. The softer the resin becomes,
the analytical solution fits the better the numerical
solution (see Figs. 5–10). This conclusion can be
extended to the case where the compliance increase
has a geometrical origin, for instance, the resin layer
becomes thicker.

�
 The normal contact stress on the surface between the

steel bolt and ring is very little sensitive to the change of
the resin’s stiffness. Consequently, the contact stress
determined in the case of a soft adhesive layer can be
also be used with a high degree of precision for the case
of a stiff adhesive layer.
In this section, we have made the plane stress hypothesis
which is appropriate for the real tempered glass structure
studied. The conclusions issued from the comparison
between the analytical and finite element results hold also
for the case of plane strain, since it suffices to replace the
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Kolosov constant k2 ¼ ð3� n2Þ=ð1þ n2Þ for plane stress by
the one k2 ¼ 3� 4n2 for plane strain.

The analytical solution presented in Section 2 has been
compared with the finite element solution by considering a
real pin-loaded joint with a non-zero radial force but a zero
moment applied at the center of the bolt. If a non-zero
moment is involved, the results from the comparison
between the analytical solution and the finite element
solution are expected to be similar to those presented
before.

4. Conclusion

A good knowledge of the stress field inside the thin
adhesive resin layer in a pin-loaded joint employed to
assemble elements of a tempered glass structure is essential
for a safe design of the latter. In this work, an analytical
solution has been proposed to determine the stress and
displacement fields inside the resin layer on the basis of the
fact that the stiffness of a typical resin is much smaller than
the one of steel or glass and by using the Michell’s stress
function method. Our analytical solution has then been
compared against and validated by the finite element
method for a wide range of resin’s rigidity. In particular, it
is shown that the difference between the analytical solution
and the finite element one is negligible once the resin is
sufficiently soft. The analytical results obtained by the
present work can be used to predict the first cracking
loading of a reinforced pin-loaded joint [10]. They are also
useful for obtaining a closed-form solution for the contact
stress on the bolt-ring surface (see [10] for details).

Appendix A

In plane (strain or stress) elasticity, the general formula
for the stress function in a system of polar coordinates ðr; yÞ
reads

f ¼ A01r2 þ A02r2 lnðrÞ þ A03 lnðrÞ þ A04y

þ ðA11r3 þ A12r lnðrÞ þ A14r�1Þ cosðyÞ þ A13ry sinðyÞ

þ ðB11r3 þ B12r lnðrÞ þ B14r�1Þ sinðyÞ þ B13ry cosðyÞ

þ
X1
n¼2

ðAn1r
nþ2 þ An2r�nþ2 þ An3r

n þ An4r�nÞ cosðnyÞ

þ
X1
n¼2

ðBn1r
nþ2 þ Bn2r

�nþ2 þ Bn3rn þ Bn4r
�nÞ sinðnyÞ.

(12)

This formula is named after Michell for his first develop-
ment in 1899. The previous formula of f has the
characteristic that each term is a function of separated
variables r and y and satisfies the biharmonic equation in
polar coordinate system, i.e

r4f ¼
q2

qr2
þ

1

r

q
qr
þ

1

r2
q2

qy2

� �
q2f
qr2
þ

1

r

qf
qr
þ

1

r2
q2f

qy2

� �
¼ 0.

(13)

Furthermore, the terms corresponding to cos ny or sin ny
generate the stress and displacement components also in
the form of cos ny or sin ny. For example, if f ¼ rn cos ny,
we shall have the following stress and displacement
components

srr ¼ �nðn� 1Þrn�2 cos ny,

sry ¼ nðn� 1Þrn�2 sin ny,

sry ¼ nðn� 1Þrn�2 cos ny,

ur ¼ �nrn�1 cos ny; uy ¼ nrn�1 sin ny. (14)

For a detailed presentation, the reader is advised to refer to
[8]. In our problem where the displacement boundary
conditions are functions of cosð0:yÞ, sinðyÞ and cosðyÞ (see
Eq. (1)), it is natural to propose the stress function in the
simple form

f ¼ C0yþ C1r3 cos yþ C2ry sin y

þ C3r ln r cos yþ C4r
�1 cos y, (15)

which corresponds to Eq. (2).
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