Accepted Manuscript

Hysteresis in the relation between moisture uptake and electrical conductivity in neat epoxy

Gilles Lubineau, Anwar Sulaimani, Jalal El Yagoubi, Matthieu Mulle, Jacques Verdu

PII: S0141-3910(17)30124-6

DOI: 10.1016/j.polymdegradstab.2017.05.008

Reference: PDST 8227

To appear in: Polymer Degradation and Stability

Received Date: 18 April 2017

Revised Date: 8 May 2017

Accepted Date: 9 May 2017

Please cite this article as: Lubineau G, Sulaimani A, El Yagoubi J, Mulle M, Verdu J, Hysteresis in the relation between moisture uptake and electrical conductivity in neat epoxy, *Polymer Degradation and Stability* (2017), doi: 10.1016/j.polymdegradstab.2017.05.008.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Hysteresis in the relation between moisture uptake and electrical conductivity in neat epoxy

³ Gilles Lubineau^a, Anwar Sulaimani^a, Jalal El Yagoubi^b, Matthieu Mulle^a, Jacques Verdu^c

4	^a King Abdullah University of Science and Technology (KAUST)
5	Physical Science and Engineering Division, COHMAS Laboratory
6	Thuwal 23955-6900, Saudi Arabia
7	^b Univ. Bordeaux, 12M, UMR 5295, F-33400 Talence, France
8	^c Arts et Metiers ParisTech
9	Laboratoire PIMM, 151 Boulevard de l'Hopital
0	75013 Paris, France

11 Abstract

1

Monitoring changes in electrical conductivity is a simple way to assess the water uptake from environmental moisture in polymers. However, the relation between water uptake and changes in conductivity is not fully understood. We monitored changes in the electrical volume conductivity of an anhydride-cured epoxy polymer during moisture sorption-desorption experiments. Gravimetric analysis showed that the polymer exhibits a two-stage sorption behavior resulting from the competition between diffusive and reactive mechanisms. As expected, the macroscopic electrical conductivity increases with the diffusion of water. However, our most surprising observation was severe hysteresis in the relation between water uptake and electrical conductivity during the sorption and desorption experiments. This indicates that change in the electrical conductivity depends on both the water uptake and the competition between the diffusive and reactive mechanisms. We studied samples with various thicknesses to determine the relative effects of the diffusive and reactive mechanisms. This is an important observation as it means that general electrical monitoring techniques should be used cautiously when it comes to measuring the moisture content of polymer or polymer-based composite samples.

¹² Keywords: Epoxy, Moisture sorption, Hydrolysis, Electrical properties, Diffusion

^{*}Corresponding author: gilles.lubineau@kaust.edu.sa Preprint submitted to Elsevier

13 1. Introduction

Epoxy resin polymers are used in a wide range of industrial products, including electronic 14 components, electrical insulators and structural adhesive components. In aeronautical ap-15 plications, in which epoxy resin polymers are preferred for stiffness and durability, these 16 polymers are exposed to extensive moisture from the environment, which can endanger the 17 integrity of the structures. Indeed, the absorption of environmental moisture (i.e. water 18 uptake) leads to a decrease in the glass transition temperature [1-4] and a decline in the 19 mechanical performance [4–6] of the polymer. Water uptake has also been found to modify 20 some physical properties of epoxy systems, such as their thermal [7] and electrical conductiv-21 ity [8]. Dielectric analysis has been conducted [9, 10] on these physical changes to investigate 22 the interaction between the water and the surrounding polymer. Several studies have fo-23 cused on the kinetics of water absorption into the bulk of neat epoxy materials [11–14]. The 24 physical and chemical interactions were found to be numerous and varied. 25

In a previous paper [15], we proposed a fully coupled diffusion-reaction scheme to describe 26 the water uptake of epoxy resins. The underlying hydrolysis mechanism was fully studied in 27 [16]. Our previous observations suggest that the relationship between the mass water uptake 28 and the change in conductivity is complex in epoxy systems. Here, we test the influence of 29 water uptake on the macroscopic electrical volume conductivity of epoxy materials during 30 sorption and desorption cycles. We observe that the total change in conductivity is not 31 directly related to the water uptake, but rather depends on the alternation of diffusion and 32 reaction mechanisms that take place between the polymer and the water. 33

³⁴ 2. Materials and methods

The samples were made from a commercial epoxy system (EPOLAM 2063, Axson Technologies). The resin was a blend of bisphenol-A diglycidyl ether and cycloaliphatic epoxy monomers. The resin was mixed with an anhydride hardener in a mass ratio of 100:107. We produced three thicknesses of neat epoxy samples, $250 \pm 7\mu$ m, $510 \pm 5\mu$ m and $934 \pm 5\mu$ m. The sample mold consisted of two stainless steel plates that were internally coated with a release agent and bolted together with a spacer sheet placed between. The samples were cured for six hours inside a vacuum chamber at 80 °C and then post-cured for four hours inside a universal oven at 180 °C. Dynamic mechanical analysis determined the glass transition temperature (T_g) to be 140 °C. This T_g was lower than the maximum reachable T_g (180 °C). This observation was consistent with the Fourier transform infrared (FTIR) spectroscopy that revealed peaks corresponding to residual anhydride and epoxy groups, suggesting that the curing of the resin was incomplete [15, 16].

47 3. Experiment methods

First, the samples were dried at 50 °C under a primary vacuum for two days. Second, the samples were conditioned inside a climatic chamber at 50 °C and 60% relative humidity for 96 hours (sorption). Finally, the samples were next subjected to desorption under a primary vacuum inside a vacuum chamber at 50 °C for 96 hours. Every eight hours, a sample of each thickness was removed from the chamber to be superficially dried, and gravimetric analysis was performed by weighing the sample with an analytical balance to measure the mass uptake (m_w) as per Eq.(1),

$$m_w = \frac{m - m_d}{m_d},\tag{1}$$

where m is the current weight of the epoxy specimen and m_d is its initial weight measured at the end of initial conditioning phase.

57

Then, the out-of-plane direct current volume conductivity was measured according to ASTM standard D257 [17] using a Keithley 6517B electrometer [18]. Four hundred volts were applied across the sample thickness and the resistance, R, was determined. Then, the electrical conductivity (σ_s) was calculated using Eq.(2),

$$\sigma_s = \frac{2H}{R},\tag{2}$$

⁶² where H is the half thickness of each plate.

63 4. Results and discussion

⁶⁴ We plotted the water uptake based on mass (mass uptake) in relation to time and to the ⁶⁵ reduced time, $\sqrt{t}/2H$, in Fig. 1(a) and Fig. 1(b). During the first 10⁵ $s^{1/2}.m^{-1}$ (from point ⁶⁶ A to point B), the curves of three sample thicknesses coincide and have a slope of about ⁶⁷ $6.10^{-8} \text{ m.} s^{-1/2}$. This initial behavior is interpreted here in terms of Fick's diffusion.

However, classic Fickian equilibrium mass uptake is not observed. Rather, the coupled 68 diffusion-reaction model introduced in [15] describes very well the hydrolysis that contributes 69 significantly to the mass uptake after $10^5 s^{1/2} m^{-1}$ (point B). As the water uptake of the 70 epoxy resin increases, hydrolysis of the polymer network caused by the diffusing water leads 71 to a change in the effective diffusion parameter and in the solubility of water in the network. 72 So, after point B, the material reacts slowly with the water, causing a supplementary mass 73 increase. The curves shown in Fig. 1(b) diverge after point B because the reaction to the 74 water diffusion is a volume-scalable mechanism, in contrast to the Fickian diffusion that 75 depends on the thickness of the sample (i.e. a thickness-scalable mechanism). The reaction 76 begins as soon as the water penetrates the sample, but the corresponding mass uptake 77 becomes significant only after point B. In the thinnest sample (0.25 mm), diffusion and 78 reaction are well-separated; the physical equilibrium is reached just after point B and the 79 remaining mass gain is due to hydrolysis. 80

Figure 1: Mass uptake in relation (a) to time and (b) to the reduced time $\sqrt{t}/2H$.

The changes in the electrical conductivity of the samples are plotted in Fig. 2 and Fig. 3. These results show that water uptake causes a complex increase in conductivity that cannot be explained by the water uptake alone. Fig. 3 also reveals strong differences between the thin and thick samples. In the thicker samples (1 mm), a biunivocal relationship can be observed between the conductivity and the water uptake; in the thinner samples (0.25-0.5 mm), a hysteresis is observed that is stronger when the sample is thinner.

Figure 2: The change in electrical conductivity during (a) sorption and (b) desorption. The initial conductivity, σ_s , is $3.7 \pm 0.4 \cdot 10^{-15} S/m$, $3.9 \pm 0.5 \cdot 10^{-15} S/m$, $3.4 \pm 0.4 \cdot 10^{-15} S/m$ for the 0.25 mm, 0.5 mm and 1 mm films, respectively. The quantity on the y-axis is the relative change in conductivity defined as $(\sigma_s(t) - \sigma_s(t=0))/\sigma_s(t=0)$.

To better understand this hysteresis in the thin samples, we must identify the responsible dipolar groups or ions. The time scales for diffusion and hydrolysis are very different for the 0.25 mm sample, so the two processes can be considered uncoupled as a first approximation (the ratios of the diffusion characteristic time to the reaction characteristic time are given in Table 1 for different sample thicknesses).

For these thin samples, the increase in conductivity is negligible until the water uptake reaches 0.5% (point A to point B, Fig. 3(a)). This is when the water uptake is mostly linked to the diffusion of the water. However, this diffusing water has a very limited effect on the conductivity. Point B corresponds to the beginning of the hydrolysis, which triggers a completely different response. Hydrolysis creates highly polar species that cause

Thickness	Diffusion τ_D (10 ⁴ s)	Ratio κ / τ_D
250 ± 7	1.25	24.2
510 ± 5	5.2	5.8
934 ± 5	17.4	1.7

Table 1: Comparison of the diffusion characteristic time $(\tau_D = \frac{H^2}{D})$ with the reaction characteristic time (κ) [15].

the conductivity to increase. Since the sample was partially uncured, some residual epoxy 97 and anhydride groups will still remain. We have shown previously [16] that both functional 98 groups (epoxy and anhydride) are affected by hydrolysis. The epoxide groups form 1,2 di-99 ols, whereas the anhydride groups form carboxylic acids. Hydrolysis, mostly found in the 100 anhydride clusters, results in highly polar and hydrophilic functional groups that promote 101 the formation of hydronium (H_3O^+) ions [19]. From point B to point C, the conductivity 102 increases monotonically with the water uptake as more hydronium ions are created and the 103 mobility of these ions also increases. From point C to point D, the change in water uptake 104 is mainly related to the desorption of excess diffusing molecular water. The conductivity 105 is almost unchanged as most of the ions remain in the sample. From point D to point E, 106 the reverse reaction starts to have a significant effect on the electrical conductivity. Ionized 107 species are extracted from the sample and the material begins to recover its initial properties 108 (point A). This suggests that the hydrolysis is fully reversible. Thus, the relationship 109 between the water uptake and the conductivity exhibits a strong hysteresis during the cy-110 cle illustrated by points A through E. It very clearly shows that the macroscopic electrical 111 properties are not reliable indicators of the total water uptake. 112

Since the ratio of sorbed water to hydrolysis products (hydronium ions) tends to increase with increasing sample thickness for the time interval under study, it is expected that the amplitude of the hysteresis decreases with increasing sample thickness, as shown in Fig. 3.

Figure 3: Relationship between changes in electrical conductivity and mass uptake. The initial conductivity, σ_s , is $3.7 \pm 0.4 \cdot 10^{-15} S/m$, $3.9 \pm 0.5 \cdot 10^{-15} S/m$, $3.4 \pm 0.4 \cdot 10^{-15} S/m$ for the 0.25 mm, 0.5 mm and 1 mm films, respectively. The quantity on the y-axis is the relative change in conductivity defined as $(\sigma_s(t) - \sigma_s(t=0))/\sigma_s(t=0)$.

116 5. Conclusion

We observed a two-stage sorption behavior in a partially cured epoxy system with residual 117 anhydride functional groups. We described this behavior based on a fully coupled diffusion-118 reaction scheme. The water uptake caused a significant increase in the electrical conductivity, 119 but it is clear that the relation between the water uptake and the change in electrical 120 conductivity is not biunivocal. Our results suggest that the physically sorbed water has 121 a negligible effect on electrical conductivity, but that hydrolysis leads to a very significant 122 increase. This was explained by the formation of hydronium ions when water is exposed 123 to the highly polar groups created by the hydrolysis. This is an important observation as 124 it means that electrical monitoring techniques should be used cautiously when it comes to 125 measuring the moisture content of polymer or polymer-based composite samples. 126

127 Acknowledgement

The research reported in this publication was supported by funding from King Abdullah University of Science and Technology (KAUST). We thank KAUST for its continuous support.

131 References

- [1] McKague, E., Reynolds, J., Halkias, J.. Swelling and glass transition relations for epoxy matrix
 material in humid environments. J Appl Polym Sci 1978;22:1643–1654.
- [2] De Neve, B., Shanahan, M.. Water absorption by an epoxy resin and its effect on the mechanical
 properties and infra-red spectra. Polymer 1993;34:5099–5105.
- [3] Zhou, J., Lucas, J.. Hygrothermal effects of epoxy resin. part ii: variations of glass transition
 temperature. Polymer 1999;40:5513-5522.
- [4] El Yagoubi, J., Lubineau, G., Saghir, S., Verdu, J., Askari, A.. Thermomechanical and hygroelastic
 properties of an epoxy system under humid and cold-warm cycling conditions. Polym Degrad Stab
 2014;99:146–155.
- [5] Alessi, S., Conduruta, D., Pitarresi, G., Dispenza, C., Spadaro, G.. Accelerated ageing due
 to moisture absorption of thermally cured epoxy resin/polyethersulphone blends. thermal, mechanical
 and morphological behavior. Polym Degrad Stab 2011;96:642–648.
- [6] Quino, G., El Yagoubi, J., Lubineau, G.. Characterizing the toughness of an epoxy resin after
 wet aging using compact tension specimens with non-uniform moisture content. Polym Degrad Stab
 2014;109:319–326.
- [7] Da Silva, M., D'Almeida, J., Calado, V.. Variation of the thermal diffusivity of glass and carbon
 fiber-epoxy composites as a function of water absorption. Polymer testing 2009;28:543-547.
- [8] Gonon, P., Bourdelais, S., Lesaint, O., Hong, T., Guuinic, P., Debruyne, H.. Effects of hydrothermal aging on the dielectric properties of epoxy composites. In: Properties and Applications of Dielectric Materials, 2003. Proceedings of the 7th International Conference; vol. 3. 2003, p. 936–939.
- [9] Maxwell, I., Pethrick, R.. Dielectric studies of water in epoxy resins. J Appl Polym Sci 1983;28:2363–
 2379.
- [10] Boinard, P., Banks, W., Pethrick, R.. Changes in the dielectric relaxations of water in epoxy resin
 as a function of the extent of water ingress in carbon fibre composites. Polymer 2005;46:2218–2229.
- [11] Carter, H., Kibler, K.. Langmuir-type model for anomalous moisture diffusion in composite resins. J
 Composite Mater 1978;12:118–131.
- ¹⁵⁸ [12] Weitsman, Y. A continuum diffusion model for viscoelastic materials. J Phys Chem 1990;94:961–968.
- [13] Zhou, J., Lucas, J.. Hygrothermal effects of epoxy resin. part i: the nature of water in epoxy. Polymer
 1999;40:5505-5512.
- [14] Popineau, S., Rondeau-Mouro, C., Sulpice-Gaillet, C., Shanahan, M., Free-bound water absorption
 in an epoxy adhesive. Polymer 2005;46:10733–10740.
- [15] El Yagoubi, J., Lubineau, G., Roger, F., Verdu, J.. A fully coupled diffusion-reaction scheme for
 moisture sorption-desorption in an anhydride-cured epoxy resin. Polymer 2012;1:11–15.

- [16] El Yagoubi, J., Lubineau, G., Traidia, A., Verdu, J.. Monitoring and simulations of hydrolysis in
 epoxy matrix composites during hygrothermal aging. Comp Part A 2015;68:184–192.
- [17] D257, A.S.. Standard test methods for dc resistance or conductance of indulating materials. ASTM
 International 2007;.
- 169 [18] Zhou, J., Lubineau, G.. Improving electrical conductivity in polycarbonate nanocomposites using
- highly conductive pedot/pss coated mwcnts. ACS Appl Mater Inter 2013;5:6189–6200.
- 171 [19] Yao, Y., Chen, X., Zhu, J., Zeng, B., Wu, Z., Li, X.. The effect of ambient humidity on the
- electrical properties of graphene oxide films. Nanoscale Research Letters 2012;7:363.

Chillip Mark