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Abstract: Anhydride cured epoxy resins are always used as pivotal solid 

insulation medium in many electrical equipment, which will decompose due to the 
high temperature caused by partial discharge and the presence of oxygen will 
aggravate this process. In order to explore the influence of oxygen on the thermal 
decomposition characteristics of epoxy resin cured by anhydride, simulation models 
are established in this paper. The ReaxFF force field is used to simulate the pyrolysis 
process of epoxy resin and the changes in production of small molecular gases (such 
as CO2, H2O, CO and CH2O), and C2, C3 are discussed. The results show that the 
oxygen will affect the main chain of the epoxy resin by introducing a carbon-oxygen 
double bond to the tertiary carbon atom attached to oxygen atom. Meanwhile, with 
the presence of oxygen, all the products’ initial generation time will be earlier, the 
amount of CO2 will increase, the amount of H2O will go up dramatically while that of 
CH2O remain basically unchanged, the types and quantities of C2 and C3 products 
increase obviously, mainly reflected in the oxygenated products. 

Keywords: oxygen; epoxy resins; ReaxFF force field; thermal decomposition  
1. Introduction  
Anhydride cured epoxy resins are widely used in electrical equipment such as 

GIS, transformer, switchgear and cable termination because of its favorable insulating 
properties [1-2]. However, these resins are inevitable to defects, such as pits, 
contamination and metal particles during their manufacture, transportation, and 
operation because of electric, heat, and mechanical stresses. These defects render the 
surface of epoxy resins vulnerable to partial discharge, which can lead to an average 
temperature rise of 170 °C and maximum of 1000 °C around a volume of 5×10–11 cm3 
on the epoxy resin surface near the partial discharge area [3-6]. High temperature can 
result in the decomposition of epoxy resin and seriously deteriorate their insulating 
and mechanical performance, and the presence of oxygen will aggravate this process 
[7-8]. 

Huy et al [9-11] conducted a series of studies on the thermos-oxidative aging of 
anhydride cured epoxy resin. They found that the process brings down the glass 
transition temperature and produces oxidized resultants, of which the depth follows an 
exponential distribution, the mass of the resins decrease by the quasi-hyperbolic 
function at the same time. Under the thermo-oxidative degradation, the aging process, 
crack growth and their interaction of epoxy resin were investigated by X. Colin et al. 
It was found that the crack will occur on the surface when the brittles of the oxide 
layer reaches a critical value [12-14]. J. Decelle [15] et al studied the mechanism of 
oxygen’s effect on the network shrinkage during the thermal aging of aromatic 
diamine-cure bisphenol F epoxy resins and found that oxidizing the branched radical 
chain generated by the monomolecular decomposition of hydroperoxides is the main 
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path of oxygen consumption, as well as the reason of epoxy resins’ mass loss. Yang et 
al [16] studied the effects of aging time and temperature on the thermal aging 
characteristics of anhydride cured epoxy resins. The results show that the surface 
molecular will rearrangement, their apparent free volume will reduce significantly and 
the bending strength will decline obviously due to thermal aging with the presence of 
oxygen. 

Besides, effects of thermos-oxidative aging of epoxy resins on their electrical 
performance were studied as well. Jia et al [17]. investigated the thermo-oxidative 
aging of insulating materials in high voltage switchgear and found that their dielectric 
properties will decrease at first, then increase and finally tend to stabilize. At the same 
time, oxygen will accelerate the aging process by the reaction with the weak bonds. 
The aging behavior under partial discharge of epoxy resins was studied by Hudon et 
al [18-19]. Some liquid substances (glyoxylic acid and glycolic acid) and solid substance 
(crystal of hydrated oxalic acid) are found in the experiment, and not only can the 
liquid lead to sharp increase in surface conductance, but also accelerate the 
deterioration of epoxy resin. 

The ReaxFF reactive force brought forward by Duin and Dasgupta et al [20] 
developed rapidly in recent years. The force field parameters for different elements 
are exploited continuously and their application are extent to high-temperature 
reaction (pyrolysis, combustion and explosion) of organic molecules [21-22], catalytic 
reactions [23], nanotube formation [24], kinetic process of anakinetomere [25-26] and so 
on. Gregory [27] used ReaxFF force field to simulate the mechanical properties of 
amino-cured epoxy resin and the results are in good agreement with the experimental 
ones. The pyrolysis of phenolic resins was studied by ReaxFF force field and the 
relationship between the amount of hydroxyl groups and the oxygenated products was 
investigated [28]. Diao et al studied the pyrolysis mechanism of pure epoxy resin by 
ReaxFF force field and the formation of small molecules such as CH2O, H2O, CO and 
H2 was explored [29]. 

Based on the previous study [30] on the decomposition mechanism of 
anhydride-cured epoxy resin, ReaxFF force field is used to analyze the influence of 
oxygen on the decomposition characteristics of epoxy resin through several 
simulation models to lay foundation for analysis of aging and failure of solid 
insulation in the electrical equipment. 

2. Simulation Details  
2.1 Introduction of ReaxFF Force Field  
The traditional molecular force field method is unsuitable for simulating the 

chemical reaction process with continuous changes at the bond order due to its 
dependence on the bond order. To address this issue, Bond Order (BO) parameter is 
introduced to the ReaxFF force field, which allows for a continuous change in the 
bond order between atoms from unbonded to empiric bond order during the 
simulation. In the model of the reaction force field, the concept of atom type in the 
classical force field is not taken into consideration, there is no connectivity among the 
atoms in the system, either. Instead, the connectivity at the current moment depends 
on the BO between any two atoms. Expression of BO is the core of ReaxFF force 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
 

 

field, as shown in Eq. (1), 

                 ' ( )ij ij ij ij ijBO BO BO BO f rσ π ππ= + + =                 (1) 

where ijr  is the distance between atom i and j , ijBOσ
、 ijBOπ

、 ijBOππ  are single 

bond, double bond and triple bond respectively. Moreover, a function of the 
over-coordination of the central atom should be added to Eq. (1) to obtain the 
relationship between final BO and distance.  

Based on the definition of BO, the interaction between atoms is defined as a 
function of BO, which is divided into bond, angle, dihedral angle, conjugation, 
coulomb, van der Waals and adjustment items through complicated function 
calculation. Energy of all parts in the system is described by BO except non-bond 
interaction, as shown in Eq. (2), 

system bond over under val pen tors conj vdwaals CoulombE E E E E E E E E E= + + + + + + + +      (2) 

During the simulation, ReaxFF force field describes the chemical bond rupture 
and formation by calculating the variation of BO with the distance in each simulation 
time step iteration. 

2.1 Simulation Steps 
The structure used in this paper is the noncross-linked epoxy resin formed by the 

dehydration condensation of two bisphenol A diglycidyl ether molecules [31], as shown 
in Figure 1 (where α and β are the carbon atoms). There are four simulation models, 
the first one consists of 15 epoxy molecules and the other three contain 3, 5, 10 more 
oxygen molecules respectively.  

C H O

α β

 

Figure 1 Structure of epoxy resin 

Table1 Construction of models 

Number 
Initial 

Structure 

Initial Density 

g/cm3 

Density after GM 

g/cm3 
Final Structure 

1 

15*C57H70O14 0.5 1.17 

15*C57H70O14 

2 15*C57H70O14+3O2 

3 15*C57H70O14+5O2 

4 15*C57H70O14+10O2 

The simulation steps are as follow, 
1) Build three dimensional periodic models at first, of which the initial densities 
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were set to 0.5g/cm3; 
2) Annealing was then performed, balance the model with NVT ensemble and 

NPT ensemble under 600K for 100ps, and then repeat this step by reducing 
the temperature in a gradient of 50K until temperature was 300K(room 
temperature); 

3) Geometry optimization was used to get a more stable structure, after which 
the density is 1.17g/cm3, as shown in Table 1; 

4) The simulation of thermal decomposition came last, NVT ensemble was used 
and the temperature was set at 1300K (the highest temperature during the real 
partial discharge), the time step was 0.1fs and the simulation lasted for 
1000ps. 

3. Results and Discussion 
3.1 Products of epoxy decomposition 
According to the previous research[16,29,20,36], as for the decomposition products 

of anhydride-cured epoxy, the major small molecular gas products are CO2, CO, 
CH2O and H2O, as shown in Figure 2. The main sources of CO2 and CO are the acyl 
oxygen bonds, while CH2O is from epoxide groups. H2O are produced by elimination 
of hydroxyl groups as well as collision of hydroxyl radicals and free hydrogen atoms. 
C2 and C3 are the decomposition of six-membered rings in the anhydride and the 
carbon chain do not contain benzene rings.  

 
Figure 2 Products of epoxy decomposition 

3.2 Consume of reactants  
In Figure 3 and 4, oxygen molecules are consumed from 28.5ps to 300ps and the 

main chains of epoxy begin to break earlier with the addition of oxygen. When there 
are ten oxygen molecules, the initial breaking time of epoxy advances from 65ps to 
34ps, indicating that oxygen can promote the main chains cleavage of epoxy. The 
tertiary carbon atoms connected to oxygen atoms are prone to be oxidized to acyloxy 
groups by oxygen, especially the α and β position in Figure 1. 

3.3 Formation of small gases  
In Figure 5, the initial generation time of CO2 is advanced and its output 

increases with the growth of oxygen. The hydroxyl groups can be oxidized to 
carboxyl groups, while the tertiary carbon atoms connected to oxygen atom can be 
oxidized to acyloxy with the presence of oxygen, both of which contribute to the 
increase of acyloxy groups. Besides, the free oxygen atoms will react with CO and 
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produce CO2, resulting in the increase of CO2. In Figure 6, when there are oxygen 
molecules, CO molecules exist unsteadily but consumed constantly, and this process 
will be more frequent as the oxygen increase.     

Seen from Figure 7, the production of water goes up significantly with the 
addition of oxygen because of combination of free oxygen atoms and free hydrogen 
atoms. However, water production tends to saturate with the increase of oxygen 
molecules due to limitation of simulation temperature and time. On the other hand, 
the formation of CH2O remains basically unchanged on account of that CH2O is 
entirely produced by epoxy groups and the oxygen has little effect on this process, as 
shown in Figure 8.  

  
Figure 3 Time evolution of oxygen molecules Figure 4 Time evolution of epoxy molecules  

  
Figure 5 Time evolution of CO2 Figure 6 Time evolution of CO 
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Figure 7 Time evolution of H2O  Figure 8 Time evolution of CH2O 

Seen from Figure 5, 6, 7 and 8, when there are no oxygen, the production of 
small molecule gases has the following sequence: CO2, CH2O, CO, and H2O. When 
oxygen exists, CO2 is still the earliest while the initial generation time of H2O is 
earlier than that of CO and CH2O. When there are 10 oxygen molecules in simulation 
model, the sequence of initial generation time changes into CO2, H2O, CO and CH2O, 
and the most abundant gas products is still CO2 while the second one changes from 
CH2O to H2O, and CO comes the least as before. 

3.3 Formation of C2 and C3 products 
The formation of C2 and C3 are shown in Figure 9 and 10. It is obviously that the 

yields of C2 and C3 products increase with the addition of oxygen and its amount. 
Seen from Table 2, ethylene and vinyl alcohol radicals are the main C2 products 
during the epoxy decomposition without oxygen. By contrast, the number and type of 
C2 products increase greatly with the presence of 10 oxygen molecules, mainly 
reflected in more oxygen-containing C2 groups or compounds, including acetic acid, 
acetic acid radicals, acetaldehyde groups and formic anhydride radicals. In the view of 
initial generation time, C2H2O is the earliest products whether there are oxygen 
molecules or not, but that of C2H2O advanced greatly, from 311ps to 43ps. 

 
 

Figure 9 Time evolution of C2 Figure 10 Time evolution of C3 
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Table 2 Information of C2 products 

Product 

Number 

of 

Oxygen 

Products 

Initial 

Generation 

Time 

Consume 

Time 
Maximum 

Final 

Number 
Structure 

C2 

0 

C2H2O 311ps — 2 2  
C2H3 335ps 671.5ps 1 0  

C2H3O 512ps 531ps 1 0  

10 

C2H2O 43ps — 4 2  

 

C2H3O 86.5ps 224.5ps 1 0  

C2H3O2 183.5ps 235ps 1 0 
 

C2H3 316ps — 2 1  

C2O3 623ps — 1 1 
 

C2H4O2 704.5ps — 1 1  

4. Analysis of reaction paths 
Partial reaction paths where oxygen has influence on the epoxy decomposition 

mechanism is shown in Figure 11. P1, P2, P3 and P4 show the influence on breakage of 
main chain of epoxy, in which P1, P2 and P3 introduce a carbon-oxygen double bond 
to the tertiary carbon atom attached to oxygen atom at the position of α while P4 does 
at the position of β [32-35]. The activation energy of C—O bond linked to α is 
186.58kJ/mol, the lowest during epoxy decomposition without oxygen, resulting in 
the most vulnerable to breakage of this C—O bond. When oxygen participates in the 
reaction, the activation energies of P1, P2, P3 and P4 are 137.35 kJ/mol, 175.87 
kJ/mol, 160.24 kJ/mol and 151.02 kJ/mol respectively, of which all are lower than 
that of C—O，thus advance the initial fracture of epoxy main chain. 

The product M of P1 can decompose into CO2 and cycloalkane through the 
reaction paths of P11 and P12 without oxygen as well as diolefin and product N through 
P13. Then vinyl alcohol free radicals, CO2, and CO are produced by the 
decomposition of product N through P14 and P15 

[36]. With the presence of oxygen, the 
P13 is promoted because of the tertiary carbon liked to oxygen atoms at the position of 
α1 and α2. When 
the reaction takes place at α1(P16), product N will decompose into vinyl alcohol free 
radicals and CO2; when at α1(P17), a carbon-oxygen double bond-containing unstable 
product and CO2 will be produced, which is the reason why there are more C2H2O 
radicals and the initial generation time advances greatly. One of the products of P2 and 
P3 contains the structure of formic anhydride, which can produce formic anhydride. 
And P41 is the main formation path of acetic acid radicals. 
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Figure 11 Reaction paths of oxygen 

 
5 Conclusion 
ReaxFF force field was used to simulate the influence of oxygen on thermal 

decomposition characteristics of epoxy resin cured by anhydride, the changes in 
production of small molecular gases and C2, C3 products were discussed as well as the 
formation paths. The conclusions are as follow, 

1) Presence of oxygen changes the main chain breakage of epoxy under high 
temperature mainly by introducing carbon-oxygen double bond to the tertiary 
carbon atoms linked to oxygen atom, leading to advance in initial break time 
of the main chain; 

2) With the presence of oxygen, the yield of CO2 increases, the amount of H2O 
goes up sharply while that of CH2O remains basically unchanged. The 
sequence of initial generation time changes into CO2, H2O, CO and CH2O 
and the initial generation time are all earlier. 

3) With the presence of oxygen, the types and quantities of C2 and C3 products 
increase obviously, mainly reflected in the oxygenated products, the initial 
generation time is earlier as well. 
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Highlights  

� Oxygen will bring forward the initial fracture of epoxy main chain. 
� Presence of oxygen advance the initial generation time of gas products. 
� Presence of oxygen increases the production of CO2 and H2O. 
� Types and quantities of oxygenated C2 and C3 products increase obviously. 

 
 


