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a b s t r a c t

The effects of atomic oxygen on three commercial composite materials, based on two space-qualified
epoxy resins (tetraglycidyl-4,40-diaminodiphenylmethane (TGDDM) cured with a blend of 4,40-methyl-
enebis(2,6-diethylaniline) and 4,40-methylenebis(2-isopropyl-6-methylaniline); and a blend of TGDDM,
bisphenol A diglycidyl ether (DGEBA), and epoxidised novolak resin initiated by N’-(3,4-dichlorophenyl)-
N,N-dimethylurea) are studied. Samples were exposed to a total fluence of (3.82� 1020atom/cm2),
equating to a period of 43 days in low Earth orbit. The flexural rigidity and modulus of all laminates
displayed a reduction of 5e10% after the first exposure (equivalent to 20 days in orbit). Fourier transform
infrared (FTIR) spectra, obtained during prolonged exposure to atomic oxygen, were interpreted using
multivariate analysis to explore the degradation mechanisms.

© 2019 Published by Elsevier Ltd.
1. Introduction

Advanced composite materials are promising candidates in
space applications, particularly those involving deployable struc-
tures and spacecraft structural components, due to their high
specific stiffness and strength resulting from their low weight [1].
However, the high vacuum, extreme thermal cycling, vacuum ul-
traviolet (VUV) radiation, and the risk of atomic oxygen (AO)
erosion [2], make the space environment a highly aggressive one:
high vacuum (10�4-10�5 Pa), UV (100e200 nm), thermal cycling
(�150 to 150 �C), AO, charged particles, electromagnetic radiation,
micrometeoroids, and man-made d�ebris, severely limiting the
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durability of composite materials. When deployed in low Earth
Orbit (LEO), satellites are particularly prone to AO exposure (with
kinetic energy of 5eV, nominal AO flux of around 1014-1015 atoms/
cm2 s), which plays a major role in the degradation of polymer
based composite materials [3]. Several in-orbit tests have been
performed by the European Space Agency (ESA) [4], Japan Aero-
space Exploration Agency (JAXA), and the National Aeronautics and
Space Administration (NASA) [5e8], to understand the AO resis-
tance of various materials, and these have been reviewed [9].
Extensive research has been undertaken to investigate the AO
resistance of composite materials using ground-based facilities, but
few publications focus on the AO behaviour of space-qualified
composites that are already used in orbit. Two kinds of AO are
involved in the degradation mechanisms: the ground state (3P) and
electronically-excited (1D) form [10]. The ground state form, O (3P),
can abstract a hydrogen atom in the polymer structure to form a
hydroxyl group with activation energies of 28.9 kJ/mol (where the
hydrogen atom is primary), 18.8 kJ/mol (secondary), and 13.8 kJ/
mol (tertiary) (Fig. 1).

It has been determined [10] that AO can attack benzene by two
modes: abstraction of a hydrogen atom from benzene to form a
hydroxyl radical and a phenyl radical, or addition of AO to form
various possible products (Fig. 2).

The compounds vary in stability: I, II, III, and IV undergo
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Fig. 1. Schematic showing the generic reactions followed by AO [11].

Fig. 2. Schematic showing the observed reactions between benzene and AO [10].

Fig. 3. Chemical structures of epoxy resin A: (a) TGDDM cured with (b) 4,40-methyl-
enebis(2,6-diethylaniline) and (c) 4,40-methylenebis(2-isopropyl-6-methylaniline);
and epoxy resin B: (a) TGDDM, (d) DGEBA, and (e) epoxidised novolak resin initiated
by (f) N’-(3,4-dichlorophenyl)-N,N-dimethylurea).
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rearrangement to a more stable phenolic structure while V and VI
are likely to undergo condensation and polymerisation reactions
[10]. The excited form, O (1D), can also react with more complex
aromatic compounds by abstraction, but is more likely to undergo
insertion into the CeH bond of an alkyl substituent with no energy
barrier. The reactions between AO and such aromatic compounds
are more complex than benzene meaning that the degradation
mechanisms are specific to particular substituents.

Epoxy resins are the most commonly used composite matrices
in satellite applications [12], with a range of space-qualified resins
now commercially available. Those used in this study are shown in
Fig. 3, where both aromatic rings and alkyl moieties can be seen.
The principal reaction that the epoxy matrices undergo with AO is
believed to be through the biphenyl segment containing a satu-
rated alkyl bridge between the phenyl rings of the epoxy, and the
alkyl substituents. During the reaction, volatile fragments, such as
short-chain oxidation products, may leave the surface and thus
degrade the performance of the materials. This surface degradation
is particularly detrimental for deployable structures, which rely on
material compliance for compact stowage during launch, by
bending and folding ultra-thin composite laminates [13,14].
Various techniques have been studied to increase the AO resistance
of materials in LEO. Among these techniques, AO resistant coatings
are the most commonly used. This technique provides a barrier for
space materials against the AO environment and different coatings
have beenwidely studied in Long Duration Exposure Facility (LDEF)
experiment [15,16]. The patented Photosil™ surface modification
process incorporates silicon-containing chemical groups into the
sub-surface layer (i.e. up to 1 mm in depth) of the polymer coating.
Kleiman et al. [17] reported that this technique can increase the AO
resistance without a significant reduction in the thermo-optical
properties or mechanical properties of the treated materials, but
the high surface strains during stowage and deployment of the
structures preclude the use of coatings or shielding that are
conventionally employed to protect composite materials in orbit.
Polymer modification using chemical means, generally involving
the incorporation of silicon atoms through oligosiloxanes chain
segments [18] or polyhedral oligomeric silsesquioxanes (i.e. POSS
reagents), has been studied by a number of researchers to promote
the AO resistance of space materials [12,19] and work going in our
laboratories is also focused on both approaches.

In the present paper, the degradation mechanism of three
commercial composites materials is studied in detailed using
principal components analysis (PCA) to provide guidelines for the
design of new resin system. PCA has been widely used to study the
degradation of polymers. To date, few studies have been conducted
to examine the AO erosion of polymers using PCA. Awaja et al. are
notable exceptions, as their work examined the surface degrada-
tion of glass fibre-reinforced epoxy [20] and carbon-fibre rein-
forced epoxy nanocomposites [21] using a combination of X-ray
photoelectron spectroscopy (XPS), time of flight secondary ion
mass spectrometry (ToF-SIMS), and scanning electron microscopy.
Their approach used PCA to differentiate the elemental data in
terms of the concentrations of molecular species produced by the
exposure conditions. There are some similarities in the epoxy
studied by Awaja et al. (a difunctional epoxy) and epoxy B in this
work, and so the ensuing discussion takes account of the degra-
dation species reported in the literature study.

In the present work, the effects of AO exposure on the me-
chanical properties of three thin laminates, based on two com-
mercial space-qualified resins, are exposed in three successive
cycles, and their mechanical, chemical, and surface properties
assessed after each cycle. The three laminates examined in this
work are designed for space applications and employ two highly
crosslinked polymer matrices yielding high glass transition tem-
peratures. Furthermore, the different polymerisation mechanisms
(featuring an amine-cured reaction, and a polyetherification reac-
tion) yield different structures after cure which allows comparison
of the mechanisms of degradation. The flexural rigidity of thin
laminates was expected to be particularly sensitive to surface
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erosion due to AO and was therefore selected to as a parameter to
monitor any change in mechanical properties. The test protocol
consisted of applying a three-point bend test in the elastic region,
subsequently exposing the sample to atomic oxygen, and finally
performing the three-point bend test again to assess the change in
flexural properties, while the surface morphology was determined
after each exposure. Vibrational spectroscopy, coupled with
multivariate analysis, was employed to explore the degradation
mechanisms experienced by the polymer matrices. The insights
gained into the degradationmechanismwill aid the design of a new
resin system for improved AO resistance.

2. Experimental methods

2.1. Materials

Two commonly used resin systems for commercial applications
(supplied by Solvay, UK), are used in this work. They are well
characterized by their high glass transition temperature (Tg), ther-
mal stability, and high modulus. The chemical structures of the
constituent components are shown in Fig. 3.

The laminates formed from these resins, along with the desig-
nations used, are shown in Table 1. Laminate LAM01 uses a resin
system (Epoxy A) which contains (a) tetraglycidyl-4,40-dia-
minodiphenylmethane (TGDDM) cured with a blend of (b) 4,40-
methylenebis(2,6-diethylaniline) and (c) 4,40-methylenebis(2-
isopropyl-6-methylaniline). Laminates LAM02 and LAM03 use the
same resin system (Epoxy B), which is formulated from a blend of
three epoxy resins: (a) TGDDM, (d) bisphenol A diglycidyl ether
(DGEBA), and (e) an epoxidised novolak resin, initiated by (f) N’-
(3,4-dichlorophenyl)-N,N-dimethylurea).

2.2. Curing procedure

Epoxy A followed a two-step cure suggested by the supplier
[22]: the sample was heated at 2 K/min. before being held
isothermally at 130 �C (2 h) and heated again to 180 �C before being
held isothermally (2 h). Following cure, the samples were cooled to
60 �C at a rate of -3K/min. Epoxy B also employed a two-step cure
suggested by the supplier [23]: initial curing was performed at
135 �C for 1 h at 0.62MPa pressure while a free-standing post cure
was employed at 180 �C for 1 h.

2.3. Exposure test

The AO exposure test was carried out using a radio-frequency
plasma asher, located in the Department of Physics, University of
Bristol. The plasma was generated in a glass tube (length 300mm,
diameter 105mm) and the samples were placed within the
chamber, on an aluminium panel. The pressure in the main
chamber was 100 Pa while gaseous oxygen was pumped into the
chamber at around 0.2NL/min; here NL/min refers to “normal litres
per minute” and represents the oxygen flux, calculated back to
‘normal’ conditions: 0 �C, 1 atm (101.3 Pa). AO fluence was calcu-
lated based on the mass loss of a reference Kapton™ H polyimide
Table 1
The laminates used in this work.

Designation Laminate description

LAM01 Carbon fibre reinforced epoxy
LAM02 Carbon fibre reinforced epoxy
LAM03 Carbon/Kevlar fibre reinforced

a The middle ply contains unidirectional carbon fibres.
b The top and bottom plies comprise woven carbon fibre, while Kevla
sample using equation (1) [24].:

F ¼ Mk

rk Ak Ek
(1)

where F is the AO fluence (atom/cm2), DMk is the mass loss of
Kapton™H film (g), rk is the density of Kapton™H (g/cm3), Ak is the
area of Kapton™ H film (cm2), and Ek is the erosion yield of Kap-
ton™ H (cm3/atom), which is a constant (3� 1024cm3/atom)
measured in the LEO environment [24]. Once the AO fluence was
calculated, the erosion yield of tested samples can be calculated
using equation (2):

Ey ¼ M
r A F

(2)

where Ey erosion yield of tested sample (cm3/atom), DM is the mass
loss of tested sample (g), r is the density of tested sample (g/cm3), A
is the sample surface area (cm2), and F is the AO fluence (atom/cm2)
calculated using equation (1).

The cumulative AO fluence received in each exposure run and its
equivalent duration in orbit is shown in Table 2. The equivalent
duration in orbit of each exposure was calculated based on the data
from a mission in International Space Station (ISS) launched on
June 2001, when the sun entered a period of high activity. During
this period the AO fluence in ISS was alsomaintained at a high level,
the total AO fluence of this missions is 3.28∙1021 atom/cm2 for one
year of exposure [24].

2.4. Characterization methods

Surface morphology. The laminate surfaces were investigated
before and after exposure using a Hitachi TM3030Plus table-top
microscope (accelerating voltage 15 kV).

Differential Scanning Calorimetry (DSC). DSC was performed
on cured laminates under flowing nitrogen (40 cm3/min) using a TA
Instruments Q200. Samples (ca. 10mg) were cut and placed in a
hermetically sealed aluminium pan. Each sample was then sub-
jected to a heat/cool/heat analysis. First heating ramped from room
temperature to 300 �C at a rate of 10 K/min while the second
heating use the same ramping rate to determine the glass transition
temperature (Tg).

Thermogravimetric analysis (TGA). TGAwas performed using a
TA Instruments Q500 apparatus on the cured (unexposed) lami-
nates. Laminate samples (ca. 8mg) were placed in an open plat-
inum crucible and heated from room temperature to 600 �C with a
ramp rate of 10 K/min. in flowing nitrogen (40 cm3/min) to degrade
the matrix, and then heated from 600 �C to 1000 �C with the same
ramp rate in air to burn the fibre off.

Thermo-mechanical properties. Dynamic mechanical thermal
analysis (DMTA) was performed in single cantilever mode at an
amplitude of 15 Hz on each sample (0.3 mm� 12 mm� 36mm)
using a TA Instruments Q800. Five specimens of each laminatewere
tested by heating at a rate of 10 K/min. from ambient temperature
to 250 �C.

Spectroscopic analysis. Analysis of the surfaces of the laminates,
Lay-up (woven fabric)

resin A (±45/0/±45)a

resin B (0/90)3
epoxy resin B (±45/0/90/±45)b

r forms the middle ply.



Table 2
AO fluence for each exposure.

Test performed Exposure cycle Exposure duration (hr) Total AO fluence (� 1020 atom/cm2) Equivalent duration in orbit (days)

Three-point bend and SEM 1 3 1.75 20
2 3 2.82 31
3 3 3.82 43

FTIR analysis 1 1 0.26 3
2 1 0.66 8
3 1 0.84 10
4 1 1.02 12
5 1 1.25 14
6 1 1.60 18
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which had been progressively exposed to AO (over six cycles, total
AO fluence ca. 1.6� 1020atom/cm2), was performed under ambient
conditions after each exposure to AO using a PerkineElmer Series
2000 Fourier transform infrared (FTIR) spectrometer with a dia-
mond attenuated total reflectance (ATR) accessory; the AO fluence
for each cycle is shown in Table 2.
2.5. Three-point bend test

The three-point bend test was conducted on Shimadzu me-
chanical test machine with a 1 kN load cell, following procedure A
of the ASTM D790-15 standard [25]. The ASTM standard recom-
mends a span to thickness ratio of 16:1. However, Zweben et al. [26]

reported that for thin samples, the span to thickness ratio should be
more than 60:1 to obtain an accurate result. Thus, the laminates
were cut into five 38 mm� 14 mm test specimens (Table 3) and a
span of 22mm was used.

The main output of these tests is the effective flexural modulus,
equation (3) [25]:

E ¼ P L3

4 b t3 d
(3)

where E is the effective flexural modulus (GPa), P is load (N), L is the
support span (m), d is the deflection of the centreline of the spec-
imen at the middle of the support span (m), b is the width of
specimen tested (m), and t is the thickness of beam tested (m).

Flexural modulus has been used to examine the flexural prop-
erties in most of the literature cited. However, in this work, it is
hard to characterize flexural properties since the magnitude of
flexural modulus is affected by the thickness of the laminate sample
and, as this parameter displayed some variation (Table 3) and will
change with AO exposure. Thus in addition to flexural modulus, the
flexural rigidity [26], calculated using equation (4), was also used to
characterize the flexural properties of each laminate

EI ¼ P L3

48 d
(4)

where EI is the flexural rigidity (Nm2), P is load (N), L is the support
Table 3
Dimensions of all samples tested.

Sample designation Width (mm) Length (mm) Thickness (mm)

LAM01 13.80 38.38 0.25
13.43 38.62 0.24
13.85 38.20 0.25

LAM02 13.20 36.74 0.32
13.17 37.47 0.34
13.13 37.25 0.33

LAM03 13.75 38.47 0.40
13.64 37.80 0.38
13.95 38.91 0.39
span (m), and d is the deflection of the centreline of the specimen at
the middle of the support span (m).

2.6. Principal components analysis

The FTIR data were studied using PCA, which is a multivariate
analysis technique that is widely used to study the changes in shift
or intensity of spectroscopic data [27e29]. The technique provides
a mathematical transformation of the raw data to reduce the
dimensionality of the data, thus allowing a better assessment of the
differences and similarity of the spectra between various samples.
The matrix equation of the PCA model is shown in equation (5):

X¼T PT þ E (5)

where T is the scores matrix, P the loadings matrix and E the error
matrix [27]. In this work, the Xmatrix represents the raw FTIR data
before and after different exposures, and the T and Pmatrices were
generated by the PCA model, which was built using MATLAB
software.

3. Results and discussion

3.1. Baseline results before exposure

Several chemical and mechanical tests were performed on the
unexposed laminates to provide a baseline (Table 4) to compare
with the performance after exposure. The mechanical properties of
the three laminates vary due to the different resin systems and
layups used. LAM01 and LAM02 have comparable glass transition
temperatures (Tg), since the structures of the two resins and the
two laminate configurations are similar. LAM03 used a different
fibre in the middle ply, which leads to a lower Tg value compared to
the other two laminates.

The mechanical loss angle tangent data (tan d) are shown as a
function of temperature in Fig. 4. The tan d response reflects the
energy loss and viscous behaviour of the material (i.e. the damping
capability), which is determined by the epoxy matrix and the
interface between resin and fibres.

LAM01 employs a different resin compared with the other two
laminates and has a higher tan d value than other two laminates,
which indicate that there is more energy dissipated within epoxy A.
LAM02 and LAM03 use the same resin system, with the difference
in the tan d peaks attributed to the difference in the interface be-
tween fibre and matrix. A stronger fibre/matrix interface can result
in a lower peak height [30]. Thus, the results suggest that the
interface between the rigid (and non-reactive) thermoplastic
polyamide Kevlar™ and epoxy is stronger than the interface be-
tween carbon fibre and the epoxy. The TGA data for all three lam-
inates are shown in Fig. 5.

LAM 01 has the highest fibre volume fraction of the laminates
tested. The resin systems in all laminates were completely burned



Table 4
Chemical and mechanical properties of laminates before exposure.

Tg/�C

Laminates Flexural rigidity/N*m2 Flexural modulus/GPa E00max tan dmax DSC

LAM 01 441.4± 19.2 25.8± 1.1 211 224 187
LAM 02 461.4± 18.2 11.7± 0.6 213 215 167
LAM 03 467.3± 26.6 6.9± 0.2 199 204 161

Key: E00
max¼ Tg determined from the peak maximum in the loss modulus response; tan dmax¼ Tg determined from the peak maximum in the tan d data; DSC¼ Tg determined

from DSC rescan data.

Fig. 4. Mechanical loss angle tangent (tan d) as a function of temperature for (a)
LAM01, (b) LAM02, and (c) LAM03.

Fig. 5. TGA data for (a) LAM01, (b) LAM02, and (c) LAM 03.

Table 5
Mass loss of the laminates as a function of temperature.

Laminates temperature [�C] at which weight loss [%] recorded

100 200 300 400 500 600

LAM01 0.2 0.4 1.0 17.7 27.1 28.1
LAM02 0.6 1.1 2.0 24.5 38.4 39.8
LAM03 1.0 1.6 2.5 26.2 42.2 52.1
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off at around 450 �C and Kevlar™ in LAM 03 also start to degrade
after around 500 �C. After 600 �C, the gas was switched from ni-
trogen to air and the carbon fibres start to degrade. A detailed
outline of the mass loss with the increase in temperature is shown
in Table 5.
3.2. Three-point bend

The three thin laminates were exposed in three successive cy-
cles of AO exposure (Table 2), and their flexural properties were
assessed after each cycle. The mechanical properties are shown as a
function of AO fluence in Fig. 6. Both the flexural rigidity and
modulus of all laminates displayed a reduction of around 5% after
the first exposure, due to the erosion of the matrix resin; this
reduction in flexural properties will be particularly significant for
the thin laminates considered here. Although the laminates dis-
played a general reduction inmechanical properties as a function of
AO exposure, LAM01 and LAM03 displayed an increase in the
flexural modulus after the third exposure. At this stage, based on
five replicate samples there is reasonable evidence to suggest that
following exposure the flexural properties initially fall and may
recover slightly. However, the results of the data are not unequiv-
ocal and the data set would need to be increased significantly to
verify this and provide better statistical confidence in the variation
in the mechanical properties.

This would, in turn, be carried out in future work, and does not
invalidate the results of this study, which is focused on the degra-
dation of the matrices. If the observation is correct and generally
representative of other materials, then it is likely that the phe-
nomenon would be due to additional crosslinking of the carbon
fibres (graphitisation) and probably has some aspects in common
with recent work published on pyrolysed cyanate esters [31],
where mechanical performance and resilience (as evidenced by
nanoindentation) were markedly increased. However, the experi-
ments were not designed to explore this explicitly andwill form the
basis of a future, more specific study.

According to data acquired in-orbit during NASA's Materials
International Space Station Experiments (MISSE) programme [24],
the resinmatrix is significantlymore susceptible to the effects of AO
than the reinforcing fibres: the erosion yield of epoxy is about 10
times greater than that recorded for pyrolytic graphite (a model for
the carbon fibres). Thus, after the majority of the surface resin has
been eroded, the exposed carbon fibre is relatively resistant to
erosion, although not entirely inert. Therefore, after the first
exposure, the flexural properties will not change significantly un-
less the fibres become seriously eroded and damaged, which re-
quires a higher AO fluence than is achieved in this work.
3.3. Surface morphology

Samples were examined using SEM to determine the effects of
AO exposure on the surface morphology. Before the samples had
been undergone AO exposure, no obvious defects were detected on
the surface of three laminates (Fig. 7 (a), (c), and (e)). AO is highly
aggressive towards organic materials, as evidenced by the SEM
analysis: after the third exposure, when all samples had received



Fig. 6. Flexural properties of (a) LAM01, (b) LAM02 (middle), and (c) LAM03 as a
function of AO fluence exposure ( ¼ flexural rigidity, ¼ flexural
modulus).
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the highest total AO fluence, the surface resins had been severely
eroded from all the laminates, exposing the underlying fibres to the
AO (Fig. 7 (b), (d), and (f)). In addition to the resin erosion, it is also
noticeable that the resin in the gaps between the fabric yarn in
LAM01 displays significant cracks after AO exposure (Fig. 7 (b)),
which are not present in either LAM02 or LAM03.
However, even at low AO exposure, a significant amount of
surface resin had been removed to reveal the carbon fibres, i.e. even
after the first cycle (Fig. 8(a)). A gradual erosion of the surface resin
is shown for LAM03, where the surface resin was further eroded in
the second exposure (Fig. 8(b)), while in the third exposure the
surface resin had been almost completely eroded (Fig. 8(c)).

3.4. FTIR spectroscopy

The SEM data (Fig. 7) show that the pattern of erosion is uneven,
evidenced by the “pitting” seen in the residual resin, which is
located in the gaps and at the edges between the warp and weft of
the carbon fibre yarns in each laminate. These small holes indicate
that the erosion due to AO is not uniform, and it occurs at weaker
points in the resin (e.g. at structural moieties which are more sus-
ceptible to attack such as hydrogen atoms bonded to alkyl frag-
ments) and provides a path for AO to erode the underlying resin
still further. A studywas carried out using spectral analysis, coupled
with multivariate analysis, to explore the chemical nature of the
degradation mechanism.

The reaction between the polymer matrices and AO is complex
and depends on the chemical nature of the matrices. In this work,
two different resin systems were used. Epoxy A with the TGDDM is
highly aromatic, highly crosslinked, and the epoxy is tetrafunc-
tional, with glycidyl amine groups containing no methyl groups.
The curing agents are aromatic with alkyl substituents. The second
formulation, Epoxy B, contains the same tetrafunctional epoxy with
a difunctional epoxy based on bisphenol A. However, this second
epoxy has two key differences: it contains an isopropyl bridge,
which incorporates the less stable methyl group, and is a low
molecular weight oligomer (n¼ 0e1) which contains the less stable
methylene and methyne moieties. The curing agent (a chlorinated
aromatic compound containing both amide and tertiary amine
functional groups) leads to a highly crosslinked network. These
chemical differences offer potential for the degradation to follow
different mechanistic pathways and spectral analysis is employed
to probe this.

3.4.1. Spectral assignments
FTIR data, acquired for two resin systems before exposure, are

shown in Fig. 9. As indicated in Section 2.1, the structures of the two
cured resin systems contain many common functional groups, and
thus the FTIR spectra show strong similarities. Several variations
still exist due to the differences in the chemical structures caused
by different epoxy resin and curing agent. The inset in Fig. 9 shows a
peak fitting of the CeH stretching vibrations in the region of 3000-
2850 cm�1 for each resin system; more alkyl species can be
observed in LAM 01, which leads to a more complex CeH stretching
region in 3000-2850 cm�1. The two peaks present in 1740-
1661 cm�1 in epoxy B are assigned to the C]O stretching vibration
of the amide group, while epoxy A also shows strong peaks at that
wavenumber whichmay be assigned to C]O stretch. However, this
functional group does not exist in the structure of epoxy A, which
may be assigned to an unknown component in epoxy A arising
frommanufacture. The intense band at around 800 cm�1 in epoxy B
is assigned to the strongly dipolar CeCl stretch, which is not pre-
sent in epoxy A. The detailed assignments of the FTIR spectra are
shown in Table 6; these will be applied as a baseline to study any
peak changes after exposure to different levels of AO fluence.

3.4.2. Exploring the degradation mechanism of epoxy A using PCA
Fig. 10 shows the FTIR data of LAM01 as a function of AO fluence

exposure (the results from the third exposurewere removed due to
an instrument error). The intensity of most peaks shows a
decreasing trend after exposure and the CH stretching vibration



Fig. 7. The surface morphologies of LAM01 (a, b), LAM02 (c, d), and LAM03 (e, f) before and after third exposure (a, c, e, AO fluence¼ 0; b, d, f, AO fluence¼ 3.82� 1020atom/cm2).

Fig. 8. The surface morphology of LAM03 following (a) first exposure, (b) second exposure, and (c) third exposure.
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around 3000 cm�1 almost completely degraded after the fifth
exposure. Only one peak, at around 1400 cm�1, increased due to the
formation of the OeH functional group (this is an OeH bend).
However, it is hard to examine the AO performance of different
structural moieties directly from the FTIR data. To better under-
stand the degradationmechanism, PCAwas applied to the FTIR data
to study the effect of AO on the different functional groups of the
two resins. The FTIR datawill be input into PCAmodel as the matrix
X in Equation (5).
To further understand the change with exposure, the data set
was extracted using the PCA technique and the results are shown in
Fig. 11.

The cumulative eigenvalue of each component in Fig. 11(a)
shows that five components were obtained. The first three com-
ponents represent around 98% of the overall FITR data set, thus,
only PC1, PC2, and PC3 were analyzed. Fig. 11(b) and (c) show a
change in the score, which refers to the matrix T in Equation (5), of
each component as a function of exposure: the score of PC1



Fig. 9. FTIR data for (a) epoxy A and (b) epoxy B before exposure (insets show the CH stretching vibration region with fitted peaks).

Table 6
Spectral assignments of the two epoxy types used in this study.

Wavenumber/cm�1 Functional group Epoxy A Epoxy B

3340 OeH stretching vibrations ✓ ✓

3000e2850 CeH stretching vibration ✓ ✓

1740e1660 C¼O stretching vibration of unknown component ✓

1740e1720 C¼O stretching vibration ✓

1661 C¼O stretching vibration ✓

1610e1450 Ring eC]C- stretching vibration ✓ ✓

1461e1455 CeH deformation vibration ✓ ✓

1420e1411 OeH deformation vibration ✓ ✓

1362 CeH wagging vibrations of secondary alcohols ✓ ✓

1320e1296 CeN stretching vibrations ✓ ✓

1240e1170 ¼ CeH in-plane deformation ✓ ✓

1150e1075 CeO stretching vibrations ✓ ✓

1040 CeOeC stretching vibrations ✓

1010 CeO stretching vibrations ✓

900e650 Ar ring vibrations ✓ ✓

800 CeCl stretching vibrations ✓

Y. He et al. / Polymer Degradation and Stability 166 (2019) 108e120 115
decreased with the increase of AO fluence. The score of PC2
increased after the first exposure and then started to decrease (it is
worth noting that the score of PC2 before exposurewas the lowest);
both PC1 and PC2 offered a good means of separating the samples
on the basis of exposure, while PC3 was less useful in differenti-
ating the samples. Combining the trend of scores and loadings
(refer to the matrix P in Equation (5), expressed as a percentage) of
each PC, it can be concluded that PC1 is correlated with the overall
change in the intensity of each peak, a positive value in the loading
plot (Fig. 11(d)) suggesting a decrease in that peak, while the
negative value indicates an increase.

PC2 represents the changing rate of each peak, thus a positive
value indicates a gradual decrease in the intensity and a negative
value indicates a significant decrease. For those wavenumbers
where the PC2 loading is higher than PC1 this suggests that the
intensity remains constant or increases following the early expo-
sure, and decreases as the exposure progresses. PC3 represents the
shift and the presence of newly-formed peak as the AO fluence



Fig. 10. FTIR spectra of epoxy A as a function of AO fluence exposure.

Fig. 11. PCA of FTIR spectra of epoxy A as a function of AO fluence exposure. (a) cumulative eigenvalue of each component (b) scores plot of PC1 vs. PC2. (c) scores plot of PC1 vs. PC3.
(d) loading plot of PC1, PC2, and PC3.
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increases. It is worth noting that the scores of PC1 and PC2 after first
and second exposures, and the third and fourth exposures are
similar while PC3 varies, which indicates that the changes from first
exposure to second exposure, and from third exposure to fourth
exposure are dominated by peak shift and formation instead of
intensity change. The results of PCA study indicated several
chemical or structural changes taking place during the erosion of
epoxy A (and these are shown schematically in Fig. 12): the alkyl
component degraded quickly during the reaction with AO, thus the
intensity of the methyne CH group decreased sharply. The reaction
between the AO and the methyne CH formed a number of hydroxyl
and carboxyl groups, leading to an increase in the intensity of the
OeH deformation vibration (1418 cm�1) as a function of exposure.
The OeH stretching vibration decreased in the early stages of
exposure and then shifted to lower frequency due to the formation
of different types of OeH (i.e. polymeric, hydrogen-bonded
species).

The formation of the carboxylic functional group also leads to a
shift in the OeH group (the carboxylic acid moiety may dimerise
easily) and accounts for the formation of the CeO group. The aro-
matic eC]C- stretching vibration at 1595 cm�1 and the¼ CeH in-
plane deformation in 1236-1173 cm�1 also decreased sharply due
to the change in the distribution of aromatic substitution following
AO reaction. The aromatic eC]C- stretching vibrations at
1511 cm�1 and 1486 cm�1 correlate with the both electronic donor
and acceptor substituents in the aromatic ring. When the materials
react with AO, the donors decreased and acceptors increased, thus
the intensity at 1511 cm�1 decreased significantly while intensity at
1486 cm�1 increased during the early stages of exposure. Several
peaks, such as the CeN stretching vibration at 1296 cm�1, remained



Fig. 12. Schematic showing range of potential degradation reactions when epoxy A is exposed to atomic oxygen.
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Table 7
Summary of the change trend for each peak in epoxy A.

Intensity Trend Wavenumber/cm�1

Decreased sharply 3005-2673, 1664, 1595, 1512, 1460, 1362, 1173, 770
Decreased gradually 1578, 1360, 1233, 1103, 1071, 1043, 1010, 960-650
Increased in early exposure 1484, 1449, 1296, 871, 718, 679
Moderately increased 1418
Peak shifted/newly formed 3239, 3070, 2831
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unchanged at the early stages of exposure, but began to decrease in
intensity as exposure continued. These groups are less reactivewith
AO in the early stages but will finally experience degradation as the
AO fluence increases. A summary of the trend in the changes
observed for characteristic peaks is shown in Table 7.
Fig. 13. FTIR spectra of LAM02 as a f

Fig. 14. PCA of FTIR spectra of LAM01 as a function of AO fluence exposure (a) cumulative eig
(d) loading plots of PC1, PC2, and PC3.
These data are consistent with the study performed by Awaja
et al. [20] who reported that increasing exposure to LEO conditions
led to rapid formation of CeO, carbonyl and carboxyl species,
indicating evidence of chain scission; erosion of the surface resin
was also particularly evident. The aliphatic hydrocarbon
unction of AO fluence exposure.

envalue of each component, (b) scores plot of PC1 vs. PC2, (c) scores plot of PC1 vs. PC3,



Table 8
Summary of the change trend for each peak in epoxy B.

Intensity Trend Wavenumber/cm�1

Decreased sharply 2994-2687, 1610, 1509, 1455, 1182, 1121, 1081, 1039, 935, 829, 801, 700
Decreased gradually 1655, 1580, 1320, 1295, 1238, 1104, 1010, 871
Increased in early exposure 1485, 1149
Moderately increased 1740, 1423
Peak shifted/newly formed 3343, 2920-2850
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components in the epoxymatrix (based on a bisphenol A/bisphenol
F blend) were also susceptible (significant amounts of C3H7NOþ

were detected using ToF-SIMS, but positively-charged C2eC4
fragments were also evident).

3.4.3. Exploring the degradation mechanism of epoxy B using PCA
The corresponding FTIR data for epoxy B as a function of AO

fluence exposure (Fig. 13) show a similar decreasing trend after
exposure (the result of third exposure was removed due to an in-
strument error).

The data were also imported into PCA model as matrix X in
Equation (5) to analyse the structural changes in epoxy B with
increasing AO fluence and the results are shown in Fig. 14. The
cumulative eigenvalue of each component in Fig. 13(a) indicates
that the first three components account for approximately 99% of
the overall FITR data set. Fig. 13(b) and (c) show a change in the
score of each component as a function of exposure: the trend of the
scores of PC1 and PC2 is similar to epoxy A, however, the change in
the scores of PC1 and PC2 in epoxy B is more gradual. PC3 shows an
increase in its score after the first exposure, and then starts to
decrease. One again, PC1 offers the best means of differentiating the
samples as a function of exposure. Fig. 13(d) shows the loading for
each component and the results suggest that the function of each
PC in epoxy B is similar to epoxy A. However, the change of several
peaks varies since the two resin systems have different chemical
structures and thus different stabilities.

In addition to the increasing intensity of OH deformation vi-
bration in 1423 cm�1, the C]O stretching vibration in 1740 cm�1 of
epoxy B also increased due to the formation of C]O from carbonyl.
The intensity of C]O stretching vibration from amide in 1660 cm�1

displays a gradual decrease due to the degradation of the amide
group. Unlike epoxy A, epoxy B displays a significant decrease in
1039 cm�1, due to the reaction between AO and the CeOeC group
from ether, which will form C]O function group and increase the
intensity of carbonyl in 1740 cm�1. The CeCl stretching vibration
around 800 cm�1 also decreases due to degradation. Table 8 sum-
marizes the trends in the changes in each peak in epoxy B with
increasing AO fluence.

The PCA technique provides a more clear view of the FTIR data
and the results suggest that the main changes occurring within the
two resin systems include the significant degradation of the alkyl
moieties, shifts in the position of the aromatic peaks, formation of
OH and C]O groups, etc. The alkyl groups in both resins are almost
complete degraded after the fifth exposure, which indicates that
alkyl groups are the weak point within the structure. The shift of
aromatic signals and formation of the OH and C]O functional
groups indicate the abstraction and insertion mechanisms
following the reaction with atomic oxygen.

4. Conclusions

In this study, the AO degradation behaviour of three thin lami-
nates designed for space applications has been compared to un-
derstand the degradation mechanism of composite materials in
LEO using PCA technique. The three laminates use two different
epoxy resin systems and have comparable mechanical properties
before exposure. The key findings of this work are that the me-
chanical tests suggest that the flexural properties of all laminates
degrade after the first exposure due to the erosion of matrix.
However, after the first exposure, the flexural properties will not
change significantly unless the fibres become seriously eroded and
damaged. The SEM images indicate that the resin on the surface of
three laminates has been almost entirely eroded after AO exposure.
Some residual resin remains in the gaps and at the edges of the
carbon fibre yarn. The laminates experienced a gradual erosion of
surface resin with the increase of AO fluence. A PCA analysis of the
FTIR spectral data suggests that the surface resin on all laminates
has suffered significant degradation after exposure, and that the
alkyl moieties are the weak points of the structures since they are
almost completely eroded after the fifth exposure, which is
consistent with other researchers’ work on the mechanism of AO
erosion [11]. The application of the PCA method will assist with the
future design of new matrix resins systems for this application, by
gauging structural moieties in the molecular structure that are
particularly susceptible to AO attack.
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