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A novel phosphorus-nitrogen flame retardant named as melamine phenyl phosphate (MAPPO) was
synthesized successfully via the neutralization reaction between phenylphosphonic acid (PPOA) and
melamine (MA). The chemical structure of MAPPO was characterized by Fourier transform infrared
spectra (FT-IR), nuclear magnetic resonance (NMR) and element analysis (EA). MAPPO was introduced
into epoxy resin by blending to improve the flame retardancy. Flame retardancy and combustion
behavior of EP/MAPPO were investigated by limiting oxygen index (LOI) test, vertical burning (UL-94)
test and cone calorimeter test. UL-94 and LOI tests results showed EP containing 18 wt% MAPPO passed
the UL-94 V-0 rating and got a high LOI value of 33%. In the cone calorimeter test, compared with that of
EP, the values of peak of heat release rate (HRR), total heat release (THR), peak of smoke production rate
(PSPR) and total smoke production (TSP) of modified EP were reduced by 58.7%, 40%, 49% and 61.6%,
respectively. By analyzing the volatile pyrolysis products of MAPPO, it was known that MAPPO mainly
produced CO,, NH3, H,0 and other nitrogen-containing compounds, which diluted the concentration of
fuel gases and oxygen during combustion. Meanwhile, the char residue of EP/MAPPO system after
combustion was also analyzed by scanning electron microscope (SEM), FT-IR and Raman tests, and the
results showed MAPPO was able to promote the crosslinking of EP leading to the formation of compact
char layer containing P-O—C, P=0 and C=C, etc. In a word, the enhancement in flame retardancy was
attributed to both dilution effect of non-combustible gases and barrier effect of compact char.

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

will produce some toxic or smoke during combustion, which leads
to the harms to the environment and human safety as well [7,8].

As one of the most common used thermoset polymers, epoxy
resins are widely used in the fields of adhesives, coatings, aerospace
& aviation, composites and electronic circuit board because of its
good adhesive property, excellent dimensional stability, high me-
chanical strength, outstanding chemical resistance and excellent
dielectric performance [1—6]. However, the inherent flammability
and lots of smoke production defects of epoxy resin (EP) which
seriously restricts its application in many fields to a certain extent.

For the current industrial products, adding a small amount of
halogen-containing flame retardants is a normal way to improve
the flame retardancy of EP, but halogen-containing EP composites
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Hence, it is necessary to develop the efficient and environmentally
friendly flame retardants to replace halogen-containing one for
solving the above problems.

To date, a variety of halogen-free flame retardants have been
developed to improve the fire retardancy of EP, including inorganic
hydroxides [9—11], organic phosphorus-containing flame re-
tardants [12—16] and intumescent fire retardants (IFR) [17—19].
Due to low flame-retardant efficiency, high loading of inorganic
hydroxides are always required, which compromise to the me-
chanical properties. Although organic phosphorus-containing
flame retardants can endow satisfied flame retardancy of EP, their
smoke production has not been well inhibited. For example, Xu
et al. [20] prepared a novel DOPO-based curing agent (IHODOPO)
derived from DOPO and imidazole for EP, and fire tests results
presented that EP containing 15 wt% IHODOPO can pass the UL-94
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V-0 rating and achieved a LOI value of 37%, while the smoke pro-
duction was increased compared with that of neat EP. Intumescent
flame retardant (IFR) is considered to be a promising method for
imparting EP with expected flame retardancy, more importantly,
which can effectively achieve smoke suppression effect due to its
condensed phase activity [21—24]. Basically, IFR consists of an acid
source, a charring agent and a gas source. Once the material con-
taining IFR is ignited, the intumescent char structure can be
developed through the dehydration, charring and foaming process,
which restrains the heat and oxygen transfer, thereby improving
the flame retardancy and smoke suppression. For non-charring
resins, IFR/resin system can be constructed with above three
components, while only the acid source and gas source are required
to prepare IFR/EP system because of the good charring ability of EP.
In most cases, some phosphorous-nitrogen containing flame re-
tardants, such as melamine cyanurate (MCA), melamine phosphate
(MP), melamine polyphosphate (MPP) and ammonium poly-
phosphate (APP) can provide the acid source and gas source for IFR/
EP system [25—28]. By the comparison with the previous three
flame retardants, APP possesses a relatively high flame-retardant
efficiency, but adding 20 wt% APP still can not make EP pass V-
0 rating [29]. In addition, the poor compatibility between inorganic
IFRs (MCA, MP, MPP and APP) with EP matrix also resulted in the
decrease of flame retardancy.

To address some of above problems, a novel organic melamine
phosphonate intumescent flame retardant was synthesized by the
neutralization reaction between phenylphosphonic acid (PPOA)
and melamine (MA) for EP. A series of flame-retardant EP was ob-
tained by introducing different amount of MAPPO. Thermal sta-
bilities and charring abilities of MAPPO and EP/MAPPO samples
were investigated by TG. Fire retardancy and combustion behavior
of EP and EP/MAPPO samples were investigated by LOI, UL-94 and
cone calorimeter tests. Besides, the flame-retardant mechanism of
MAPPO was also studied by TG-IR, SEM, FI-IR and Raman tests.

2. Experimental
2.1. Materials

Diglycidyl ether of bisphenol A (DGEBA, E—44) was obtained by
Nantong Xingchen Synthetic Material Co., Ltd. (Nantong, China). 4,
4/~ Diamino diphenylmethane (DDM) and melamine (MA) were
purchased from Sinopharm Chemical Reagent Co., Ltd. (Shanghai,
China). Phenylphosphonic acid (PPOA) was purchased from Aladdin
Chemistry Co., Ltd. (China). Distilled water was obtained by our Lab.

2.2. Synthesis of flame retardant melamine phenyl phosphate
(MAPPO)

Route for synthesis of MAPPO was shown in Scheme 1. Firstly,
phenylphosphonic acid (7.9g, 0.05mol) and 200 mL deionized
water were added into a 500 mL three-neck flask equipped with a
mechanical stirrer and reflux condenser. Then the mixture was
heated to 100 °C with continuous stirring. After that, melamine

(12.6 g, 0.1 mol) was added to flask by twice in 20 min. After fin-
ishing, the solution was kept stirring for 5 h. Finally, the reaction
solution was cooled slowly to room temperature. The products was
filtered and washed by ethanol several times, and then dried under
vacuum at 80 °C for 12 h to obtain the white product (yield: 98%).

2.3. Synthesis of cured epoxy resins

Formulas of cured epoxy resin samples were listed in Table 1.
The preparation process of cured epoxy resins modified with
MAPPO was follows: DGEBA and MAPPO were mixed together with
a magnetic stirring at 100°C for 30 min until a homogenous
mixture was obtained. After that, DDM was poured into the above
mixture, and was kept stirring for 2—3 min. Finally, the mixture was
rapidly charged into mold, and cured at 100 °C for 2 h and 150 °C for
3h. The EP was also prepared by the same procedure without
MAPPO.

2.4. Measurements

Fourier transform infrared spectra (FT-IR) of samples were ob-
tained using a Nicolet 6700 infrared spectrometer in the range of
4000—400 cm ™! at rt. The powder samples were mixed with KBr
powders and pressed into tablets.

H and 3'P nuclear magnetic resonance (NMR) spectra of sam-
ples were recorded on a Bruker Ascend 400 spectrometer using
DMSO as the solvent.

Thermogravimetry analysis (TG) test performed on thermogra-
vimetric analyzer (TGA4000, USA). About 8 mg samples (MAPPO
powder and cured EP resin pellets) were putted in alumina crucible
and heated from 40°C to 700°C at a heating rate of 10 °C/min
under nitrogen. In addition, the gases produced from thermal
decomposition process from 40 to 700 °C at a heating rate of 10 °C/
min were analyzed by FT-IR coupled with TG.

Differential scanning calorimeter (DSC) spectra were connected
with a PE DSC 4000 at a heating rate of 10 °C/min from 40°C to
200 °C under nitrogen flow of 50 mL/min.

LOI values were obtained using a HC-2C oxygen index instru-
ment (Jiangning, China) according to ASTM D2863-97, with sheet
sizes of 130 x 6.5 x 3.2 mm. UL-94 rating test was measured on a
CZF-4 instrument (Jiangning, China) according to ASTM D3801, and
the size of sheets was 130 x 13 x 3.2 mm. Cone calorimeter test was
measured using a cone calorimeter (Fire Testing Technology, UK)
according to ISO5660-1 at a heat radiant flux of 35 kW/m?, and the
size of each sample was 100 x 100 x 3.2 mm.

Table 1

LOI and UL-94 results of EP and EP/MAPPO samples.
Sample DGEBA (%) DDM (%) MAPPO (%) UL-94 LOI(%)
EP 80 20 0 NR 256+0.5
EP/5MAPPO 76 19 5 NR 322+05
EP/10MAPPO 72 18 10 V-1 333+0.5
EP/15MAPPO 68 17 15 V-1 34.0+0.5
EP/18MAPPO 65.6 16.4 18 V-0 33.0+0.5

H,N NH,

TS TR
-

H,N NH,

Scheme 1. Route for synthesis of MAPPO.
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The micromorphology of chars after cone calorimeter test was
observed using a JEOL JSM-5900LV scanning electron microscopy
(SEM) instrument in a high vacuum at a voltage of 20 kV.

The LabRAM HR800 laser Raman spectrometer (SPEX Co.) was
carried out to analyze the char structure with a 532 nm helium-
neon laser line at room temperature.

3. Results and discussion
3.1. Characterization of MAPPO

The structure of MAPPO was firstly characterized by FI-IR, Fig. 1
showed the IR spectra of PPOA, MA and MAPPO. For PPOA, three
characteristic peaks at 2732 cm™~, 1438 cm~! and 1149 cm™~! were
observed, which belonged to P—OH, benzene ring and P=0 groups,
respectively. For MA, the peaks at 3468 cm ™', 3418 cm ™, 3331 cm™!
and 3123 cm™! were attributed to different NH- bonds of MA [30].
The peak at 1650 cm~! was assigned to C=N bond. For MAPPO, by
comparison with MA, both the change of the position of C=N
which moved from 1650 to 1676 cm~! and the appearance of P—0
bond, suggesting PPOA was successfully attached to the molecule of
MA [31].

The structure of MAPPO was further confirmed by NMR test. In
Fig. 2(a), compared with PPOA, the new peak appeared at 6.7 ppm,
which was assigned to NH,- groups of MA. Meanwhile, the ratio of
integrated areas of a: b: ¢ was 2: 3: 12, which was in accordance
with the number ratio of corresponding hydrogen protons in
MAPPO. Moreover, Fig. 2 (b) presented the >'P NMR of PPOA and
MAPPO. In Fig. 2(b), the position of P atom of PPOA at 12.79 ppm,
while the position of P atom of MAPPO moved to 11.23 ppm since
the electron cloud of both oxygen anion was dispersed by the ionic
bond after salt formation. The results of IR and NMR implied that
the target product MAPPO was successfully prepared. Table 2
showed the elemental contents of MAPPO. As seen in Table 2, the
experimental value of C, H and N were approximately equal to
calculated value. The above results confirmed that the target
product (MAPPO) was successfully prepared.

Thermal decomposition behavior of MAPPO was also investi-
gated by TG test, Fig. 3 showed the TGA and DTG curves of MAPPO.
As seen, the onset decomposition temperature (Tsy, defined as the
temperature at which 5 wt% mass loss) of MAPPO was 264.5 °C, and
presented mainly four stage decompositions with 16 wt% residual
mass at 700 °C. The temperature at the maximum mass loss rate
(Tmax) of MAPPO was 287 °C, 360 °C, 515 and 620 °C, respectively.
To further analyze the gaseous product released in heating process,

PPOA

a8’ Y 1
3331 13123 1676 1149

4000 3500 3000 2500 2000 1500 1000

Wavenumber (cm™)

Fig. 1. IR spectra of PPOA, MA and MAPPO.

TG-IR test was carried out. As seen in Fig. 4, the main gaseous
products at the temperature range from 250 °C to 450 °C were CO;
and H;0, which was mainly caused by the breaking of a part of C—N,
the dehydrogenation of melamine and the dehydration
phosphoric-containing acid [29]. As the temperature increased
from 450 °C to 600 °C, MAPPO produced NH3 (965, 932 cm™!), —OH
(3547 cm™ 1), C=N (1558 cm™!), C=N (2245 cm!) [31,32], amines
and aromatic compounds (3091 cm™!), which was attributed to the
ring-opening reactions of triazine and benzene rings [33].

3.2. Flame retardancy and combustion behavior

Flame retardancy of EP and flame-retardant EP was investigated
by LOI and UL-94 tests. As seen in Table 1, EP was flammable with a
LOI value of 25.6% and failed to UL-94 test. Adding 10 wt% MAPPO
allowed EP/10MAPPO to pass UL-94 V-1 rating. Further increasing
the content of MAPPO to 18 wt%, the EP/18MAPPO successfully
reached V-0 rating. For LOI tests, after adding 5 wt% MAPPO, the LOI
value of EP/SMAPPO achieved 32%. However, with the increasing
addition of MAPPO, the LOI value of EP/MAPPO increased slightly,
and EP/15MAPPO had a highest LOI value of 34%. It suggested that
the phosphorus component of MAPPO was mainly worked in the
condensed phase, and the fuel dilution effects of ammonia gas was
inefficient at high oxygen concentration atmosphere [22,34].

Cone calorimeter test is an effective bench scale way to evaluate
the combustion behavior of materials, which provides many
important parameters including the time to ignition (TTI), peak of
heat release rate (PHRR), time to PHRR (t;,), total heat release (THR),
peak of smoke production rate (PSPR), total smoke production
(TSP), total smoke release (TSR), average CO yield (av-CQOY), average
rate of heat emission (ARHE), average effective heat of combustion
(av-EHC) and char residues, etc. Fig. 5 presented the curves of HRR,
THR, ARHE and TSP, and corresponding data were listed in Table 3.

As seen in Fig. 5 (a), EP had a high PHRR value of 1073 kW/m?,
while the HRR value of EP/18MAPPO decreased to 443 kW/m? with
areduction of 58.7%, which was caused by rapid char formation and
fuel dilution of non-combustible gases produced by MAPPO in
advance [29]. The pictures of char residues were shown in Fig. 6,
epoxy resin almost burned out, while EP/18MAPPO showed a
strongly expanded carbon residue with a residual mass of up to
31.6%, which served as a good barrier to insolute the transfer of heat
and oxygen and proved the existence of condensed phase activity
during combustion [35]. A large amount of decomposition products
of EP were participated in charring instead of burning, resulting in
the direct reduction of fuel and soot particles which were incom-
plete combustion. As seen in Table 3, it was clear that the peak of
smoke production rate (PSPR) and total smoke production (TSP) of
EP/18MAPPO were remarkable reduced compared with those of EP,
which were reduced by 49% and 61.6% respectively. Because of the
good inhibition founction of the combustion, the THR value of EP/
18MAPPO decreased by 40% as well. However, the value of EHC,
which related to the burning degree of volatile gases in gaseous
phase during combustion, was slightly decreased by 8.5%, and the
CO yield was no significant change with MAPPO addition. This
result suggested that there was few fragments with free radical
trapping formed in the gaseous phase, and the fuel-dilution by non-
flammable gas such as NHs, H,O was the major flame-retardant
mechanism in gaseous phase. In addition, to further evaluate the
fire safety of epoxy resin, fire growth rate (FIGRA, defined as the
maximum value of HRR/t and was always equal to PHRR/t,) and
maximum average rate of heat emission (MARHE, defined as the
maximum value of THR (t)/t where t was the testing time) were also
calculated. Compared with EP, the FIGRA and MARHE values of EP/
18MAPPO were largely decreased, demonstrating adding MAPPO
was able to slow down the combustion rate, and improve the flame
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Fig. 4. TG-FTIR spectra of the pyrolysis products of MAPPO at different temperature.
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3.3. Thermal behavior analysis
Glass transition temperature (Tg) of EP and flame-retardant EP
was investigated by DSC, and the corresponding data shown in

Fig. 7. From Fig. 7, all samples showed a single Tg, and the EP poesses
the highest Tg value of 159 °C. With the addition of MAPPO, the Tg
value of EP/MAPPO samples was decreased gradually. This was
mainly due to the large free volume and stereo-hindrance of
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Fig. 6. Digital photos of char residues for EP (a), EP/18MAPPO (b,c) after cone calo-
rimeter test.
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Fig. 7. DSC curves of EPand EP/MAPPO samples.

MAPPO, resulting in the decrease of the crosslinking degree of the
EP/MAPPO system [38].

Fig. 8 showed the TG and DTG curves of MAPPO, and corre-
sponding data were collected in Table 4. For EP, it began to
decompose at 355.8 °C (Tsy) and showed one-step decomposition
with a maximum weight mass loss rate at 380.5 °C and a residual
mass of 20.2 wt%. The thermal decomposition of EP at 380.5°C

100
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—=—EP

—e— EP/5MAPPO
—— EP/10MAPPO
—v— EP/18MAPPO

40-

Weight (wt%)

20+

300 400 500 600
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(Tmax) Was contributed to the breakage of crosslinked molecular
chain of EP itself [39]. For EP/MAPPO samples, the Tsy and Tpax
decreased gradually with the increase of the addition amount of
MAPPO, which was caused by the early decomposition of MAPPO.
However, the residual mass of EP/MAPPO samples at 700 °C was
higher than that of EP, and the rate at Ty,ax of all ER/MAPPO samples
was reduced. The reason was that MAPPO decomposed in advance
to produce some phosphoric-containing acid, acting as dehydrating
agents to catalyze the degradation and carbonization of EP.

3.4. Flame-retardant mechanism

To investigate the condensed phase mechanism of EP/MAPPO
system, char residues after cone calorimeter test were analyzed by
SEM, IR and Raman. As seen in Fig. 9, the char layer of EP was rough
and had many apparent crevices. Compared with EP, the char layer
of EP/18MAPPO was relatively smooth and compact, suggesting
that MAPPO was able to improve the quality of char residue during
combustion.

The element composition of the char residues were investigated
by EDX, and the relevant data were listed in Table 5. It was found
that the composition of phosphorus in the char residue of EP/
18MAPPO was higher than the theoretical value of phosphorus
content added into the cured EP/18MAPPO (1.36wt%), which
indicated phosphorus derived from MAPPO mainly left in the char
residue as well.

Raman spectroscopy was considered to be an effective method
for measuring the order degree of carbon residues and corre-
sponding data were shown in Fig. 10. Two peaks at 1358 cm~! and
1560 cm™! were observed in Fig. 10, which were assigned to D and
G bonds, respectively. Generally, the D bond was owing to disor-
dered graphite or glassy carbon, and the G bond belonged to vi-
bration of sp?-hybridized aromatic layers. Basically, R value equaled
to the Ip/I; (defined as intensities ratio of D bond to G bond) which
was assessed the degree of graphitization, and the higher R value
meant the lower the graphitization degree [40]. As seen, the R value
of EP/18MAPPO (3.34) was lower than that of EP (4.03), implying
the char layer of EP/18MAPPO with graphitization structure play a
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Fig. 8. TGA (a) and DTG (b) curves of EP and flame-retardant EP/MAPPO samples.

Table 4
TGA and DTG data of MAPPO, EP and EP/MAPPO samples.

Sample Tsy% (°C) Tmax (°C) Rate at Tpax (%/min) Residue at 700 °C (wt%)
EP 355.8 380.5 14 20.2
EP/5MAPPO 309.5 372.7 0.84 25.2
EP/10MAPPO 290.1 369.2 0.78 27.1
EP/18MAPPO 285.1 359.2 0.66 23.6
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Fig. 9. SEM images of char residues for EP (a, b) and EP/18MAPPO (c, d).

better role in the insulation of heat and oxygen.

The concentration of char residues was further analyzed by IR. In
Fig. 11, the absorption peaks at about 3000 cm~! and 1609 cm™!
were assigned to CH,- and C=C bonds, respectively. However,
some differences were found in EP/18MAPPO. The peaks at
1231cm~! and 1176 cm™! belong to P=0 and P—O—C bonds,
respectively, demonstrating some organophosphorus compounds
exited in char residues after burning [41]. The above results proved
that some compounds produced by MAPPO accelerated the cross-
linking of EP degradation products to form some stable and
compact char residues rich in organophosphorus compounds.

Based on the above analysis, the flame-retardant mechanism of
EP/MAPPO system was concluded as follows. In the gaseous phase,
MAPPO generated a large of nonflammable gases, such as NH3, CO,
and Hy0, which diluted oxygen and fuel gases produced by
decomposition of epoxy resin as well as took away the heat during
combustion. In the condensed phase, the poly-/pyro-/

Table 5
Element composition of the char residues for EP/18MAPPO after combustion.
Sample C (wt%) O (wt%) N (wt%) P (wt%)
EP/18MAPPO 80.2 113 4.8 3.7
EP (a) EP/18MAPPO (b)
1,/1,=4.03 1,/1,=3.34
[yt oA
800 1200 1600 2000 800 1200 1600 2000

Wavenumber (cm’) Wavenumber (cm™)

Fig. 10. Raman spectra of char residues for EP (a) and EP/18MAPPO (b).

ultraphosphoric acids generated from degradation of MAPPO
would react with epoxy resin through the dehydration and
carbonization. Large amount of EP molecular fragments remained
in the condensed phase to promote the formation of expanded char
layer with P—O—C structure. This expanded char layer was able to
serve as a good barrier to restrict the heat and oxygen transfer.
Consequently, the enhancement in flame retardancy was attributed
to the diluting effect of nonflammable gases and the barrier effect of
expanded char residues with P—O—C structure at the same time.

4. Conclusions

In this paper, a novel phosphorus-nitrogen flame retardant
named as MAPPO was synthesized successfully by the neutraliza-
tion reaction and used to improve the flame retardancy of EP. As
expect, by incorporation of 18 wt% MAPPO, epoxy resin not only
passed the UL-94 V-0 rating and achieved a high LOI value of 33%,
but also significantly suppressed the heat release and smoke

EP/18MAPPO

4000 3500 3000 2500 2000 1500 1000 500

Wavenumber (cm™)

Fig. 11. IR spectra of char residues for EP and EP/18MAPPO.
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production. By the analysis of TG-IR, SEM, IR and Raman, it gave a
clear conclusion that the improvement in flame retardancy was
contributed to both gaseous and condensed phase. In gaseous
phase, some non-flammable gases such as NH3, CO, and H;O
diluted the concentration of oxygen and fuel gases to slow down
the combustion. In condensed phase, phosphorus-containing acids
produced in high temperature would react with epoxy resin by
dehydration and carbonization to form a stable and compact char
layer, which was used as a good protective layer to interrupt the
combustion.
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