Effect of elevated in-service temperature on the mechanical properties and microstructure of particulate-filled epoxy polymers

Mojdeh Mehrinejad Khotbehsara, Allan Manalo, Thiru Aravinthan, Kakarla Raghava Reddy, Wahid Ferdous, Hong Wong, Ali Nazari

PII: S0141-3910(19)30322-2

DOI: https://doi.org/10.1016/j.polymdegradstab.2019.108994

Reference: PDST 108994

To appear in: Polymer Degradation and Stability

Received Date: 18 May 2019

Revised Date: 1 September 2019

Accepted Date: 3 October 2019

Please cite this article as: Khotbehsara MM, Manalo A, Aravinthan T, Reddy KR, Ferdous W, Wong H, Nazari A, Effect of elevated in-service temperature on the mechanical properties and microstructure of particulate-filled epoxy polymers, *Polymer Degradation and Stability* (2019), doi: https://doi.org/10.1016/j.polymdegradstab.2019.108994.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2019 Published by Elsevier Ltd.

Effect of elevated in-service temperature on the mechanical properties and microstructure of particulate-filled epoxy polymers

3

Mojdeh Mehrinejad Khotbehsara¹, Allan Manalo¹, Thiru Aravinthan¹, Kakarla Raghava

4

Reddy¹, Wahid Ferdous¹, Hong Wong², and Ali Nazari³

5 Abstract

6 In civil engineering applications, epoxy-based polymers are subject to different 7 environmental conditions including in-service temperature, which might accelerate their degradation and limit their application ranges. Recently, different particulate fillers were 8 9 introduced to enhance the mechanical properties and reduce the cost of epoxy-based polymers. This paper addresses the effect of in-service elevated temperature (from room 10 11 temperature to 80°C) in particulate-filled epoxy based resin containing up to 60% by volume 12 of fire retardant and fly ash fillers through a deep understanding of the microstructure and analysis of their mechanistic response. An improvement in the retention of mechanical 13 14 properties at in-service elevated temperature was achieved by increasing the percentages of 15 fillers. The retention of compressive and split tensile strength at 80°C for the mix containing 60% fillers was 72% and 52%, respectively, which was significantly higher than the neat 16 17 epoxy. Thermo-dynamic analysis showed an increase in glass transition temperature with the 18 inclusion of fillers, while these mixes also experienced less weight loss compared to neat 19 epoxy, indicating better thermal stability. Scanning electron microscopy images showed the 20 formation of dense microstructures for particulate-filled epoxy based resin at elevated 21 temperatures. This indicates that the particulate filled epoxy resin exhibits better engineering

¹Centre for Future Materials (CFM), School of Civil Engineering and Surveying, University of Southern Queensland, Toowoomba, QLD 4350, Australia.

² Imperial College London, Department of Civil and Environmental Engineering, Kensington, London SW7 2AZ, UK

³Centre for Sustainable Infrastructure, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia

properties at in-service elevated temperatures, increasing their durability and therefore their suitability for civil engineering applications. A simplified prediction equation based on power function was proposed and showed a strong correlation to the experimental compressive and splitting tensile strength at different levels of in-service elevated temperature.

Keywords: Epoxy resin; particulate fillers; in-service elevated temperature; mechanical
properties; microstructure; prediction model.

28

29 **1. Introduction**

Epoxy resins are now commonly used as matrices in fibre reinforced polymer (FRP) 30 31 composites as well as in coating, binding and adhesive materials [1-2]. This thermosetting resin is used for pavement overlays, wastewater pipes, hazardous waste containers, and 32 33 decorative construction panels in aggressive environmental conditions [3-9]. They are also used as infill for structural repair systems [6,10,11] due to their superior properties including 34 35 modulus and strain, tensile strength, strength development, resistance to chemical attacks and 36 drying shrinkage compared to ordinary Portland cement-based materials. Recent examples of 37 structural applications of epoxy resins include as grout in the annulus between damaged pipe 38 and outer FRP repair systems in underground and underwater pipelines [12], as infill material 39 for pre-fabricated FRP jackets for damaged columns [13], and as coating and gluing 40 sandwich panels for composite railway sleepers [14]. In these civil engineering applications, 41 the epoxy-based polymer can be subjected to aggressive environmental conditions including 42 in-service elevated temperatures, which can degrade this material. For example, Sirimanna et 43 al. [15] measured a surface temperature as high as 61°C for FRP composite bridge decks 44 exposed to Australian weather conditions. In such conditions, the main concern was the 45 decrease of the mechanical properties due to material degradation from elevated 46 temperatures.

47 The sensitivity of mechanical and physical properties of particulate-filled epoxy based 48 resin to elevated temperatures is one of the major concerns in civil engineering and 49 construction applications [16]. The continuous service temperature is generally known to be 50 in the range of sub-ambient to 120°C [17]. Asset owners and engineers remain cautious about 51 accepting epoxy matrices in civil infrastructure out of concern about their structural 52 performance in the applications exposed to elevated temperatures. Manalo et al. [8] 53 mentioned that the most important reason for this concern is the incomplete and limited 54 information about the temperature dependence of composites for their application, 55 particularly in hot areas. Polansky et al., [18] found that exposing epoxy-based FRP laminates 56 to temperatures ranging from 170°C to 200°C and for a duration of 10 to 480 hours will 57 rapidly decrease the material's glass transition temperature (T_g) due the decrease in reaction 58 to thermal stress. Their microscopic observations also showed degradation of epoxy resin 59 (changing colour intensity) especially between the glass fibres and the matrix interface which 60 led to gradual deterioration of electrical and mechanical properties. Anderson [19] further showed that the T_g of epoxy resin could remain constant for a short time, but rapidly 61 62 decreased at elevated temperatures because they experienced network degradation as evidenced by mass loss. The mechanical properties of polymers are also noted to be 63 64 significantly dependent on time and temperature [20, 21]. When exposed to high temperature, 65 the epoxy polymer will soften and this can cause mechanical failures [22]. Ray [23] noted a 66 high moisture absorption for glass and carbon fibre-reinforced epoxy composites with an 67 increase in temperature. The high temperature during hygrothermal ageing also modified the 68 local stress threshold required for delamination nucleation and reduced the interlaminar shear 69 strength of epoxy-based composite laminates. Therefore, there is a need to explore methods 70 to enhance the performance of epoxy resin under elevated temperatures.

71 Different additives were introduced to epoxies to improve their properties at an 72 elevated temperature including nanocomposites with carbon-family materials and 73 metal hydroxides. [24, 25]. Koh et al. [20] found that the fracture toughness and failure 74 mechanisms of bisphenol A epoxy resin and cyclohexanedicarboxylic anhydride (hardener) at 75 an elevated temperature can be enhanced by filling with silica particulates. Recent 76 developments have also shown that the application of filler materials such as fly ash (FA), 77 fire retardant (FR) fillers, hollow microsphere (HM), and silica can improve certain 78 mechanical properties and at the same time, reduce the cost of epoxy-based polymer matrix 79 and provide environmental benefits [26,27]. The mechanical behaviour of particulate filled 80 epoxy resin is the result of complex interplay between the characteristics of the constituent 81 phases: filler, resin, and interfacial regions [28]. The result of research by Bărbuță et al., [29], Rebeiz et al., [30], and Gorninski et al., [31] have shown that the inclusion of fillers could 82 83 improve chemical, thermo-mechanical, mechanical, and durability properties of epoxy-based 84 polymer concrete. Lokuge and Aravinthan [32] also noted an increase in compressive strengths as high as 100 MPa for epoxy-based polymer concrete with the addition of 10% FA 85 86 by volume. Ferdous et al., [9] showed that the addition of light-weight fillers up to 60% by 87 volume could increase flexural modulus around three times as the fillers provide a larger 88 surface area that promotes rigid bonding with the resin. While these studies have shown that 89 the addition of particulate fillers can improve mechanical properties of epoxy resin, very limited information exists on the effects of elevated temperatures to which civil 90 91 infrastructures are normally subjected. A better understanding of the performance of 92 particulate-filled epoxy based resin under an elevated in-service temperature must be 93 achieved to further the safe use and adoption of this material in various construction 94 applications.

95 In this study, experimental investigations were conducted to determine the effect of in-96 service temperatures on the durability of particulate-filled epoxy based resin containing FA 97 and FR fillers. It focuses on understanding the effect of in-service elevated temperature on 98 physical, mechanical, and physico-chemical properties as well as the microstructure of 99 epoxy-based polymer matrix. The results of this research are expected to provide critical 100 information to advance the application and development of durable cost-effective epoxy-101 based coating matrix through a comprehensive understanding and evaluation of their 102 mechanical properties and degradation mechanism.

103

2. Materials and methods:

104

105 **2.1.Materials**

Figure 1 shows the materials employed in this study including epoxy resin and lightweight 106 107 fillers. The two main components of the epoxy resin system were Bisphenol A diglycidyl 108 ether (DGEBA) type epoxy resin (Part-A) and an amine-based curing agent (Part-B). This 109 type of epoxy system was previously studied by Ferdous et al. [4] and found suitable for 110 composite railway sleeper application. The epoxy resin was supplied by ATL Composites Pty 111 Ltd (Gold coast, Australia). Part A as unreactive and part B as reactive components were 112 mixed together based on the Amine Hydrogen Equivalent Weight (AHEW) of 60 g for Part-B 113 and Epoxy Equivalent Weight (EEW) of 190 g for Part-A as furnished by the supplier. One 114 equivalent weight quantity of the amine curative and one equivalent weight quantity of 115 DGEBA epoxy resin were required in order to make the resin mix reactive. Thus, 100 g of Part-A with density of 1.064 g/cm³ were used to mix with 32 g of Part-B with density of 116 1.182 g/cm³ to maintain the mixing ratio. Two different fillers including FR (hydrated 117 alumina powder) with a density of 2.411 g/cm³ and FA with a density of 2.006 g/cm³, were 118 119 mixed together. Railway sleepers are often subjected to fire from thermite welding of rail 120 joints, elevated temperature and UV radiation from sun. This is why hydrated alumina

121 powder and fly ash have been used together [33, 34]. The FR used was non-toxic and had low 122 abrasiveness, chemical inertness, acid resistance, smoke suppression and electric arc 123 resistance, and was supplied by Huber Engineered Materials (HEM), while Cement Australia 124 Pty Ltd supplied FA. The fillers were round with a diameter of 0.1 to 30 μ m for FA and 75 to 125 95 μ m for FR [14].

127 Figure 1: From left: Epoxy resin (Part-A), amine-based curing agent (Part-B), FR and FA

128 **2.2.** Mixture proportions

126

Four mixes with different amounts of filler were prepared, and the mix with no filler was 129 130 considered to be the control sample. Filler amounts of up to 60% by volume of the matrix 131 were added in increments of 20%, as more than 60% by volume filler in the mix was found unworkable, as was also confirmed by Ferdous et al. [9]. The mixing ratio of FR-to-FA was 132 133 kept constant for all mixes. This ratio was adopted from the previous study [9] where it was 134 finalised after several trials. Since the main purpose of this study is to investigate the effect of 135 temperature on the mechanical and microstructure properties and ensure the cost is 136 minimised, therefore, the total amount of filler was considered as a variable rather than the 137 ratio of FR-to-FA. The mixes were denoted according to the amount of filler by volume, e.g., 138 F20 indicates a mix containing 20% filler and 80% resin, as detailed in Table 1.

Table 1: Mix proportion of polymer matrices

Resin/Filler (by volume)	FO	F20	F40	F60
Part A (g)	1000	737	552	368

Journal Pre-proof								
Part B (g)	320	236	177	118				
FR (g)	0	397	794	1192				
FA (g)	0	119	239	358				

140

2.3. Specimen preparation

141 The preparation of samples and characterisation of the physical, mechanical, thermomechanical and microstructural properties of the epoxy polymer matrices were performed 142 143 according to appropriate ASTM test standards. **Table 2** summarises the different test methods 144 and the number of specimens tested for each type of test. The epoxy resin materials and the 145 particulate filler materials were first mixed separately. This ensured consistent mixing and 146 allowed the epoxy resin to become completely mixed and reactive before the filler was 147 added, then they were all mixed together until the matrix had a uniform consistency. The 148 specimens were cast in: i) sealed-bottom cylindrical PVC pipes with a diameter of 25 mm 149 and height of 25 mm – suitable for measuring the density, porosity, compressive strength and 150 split tensile strength; ii).non-stick sheets to be cut to 60 mm length, 10 mm width and 5 mm 151 depth – suitable for measuring the Tg. The samples were cured in moulds for 2 days at room 152 temperature, demoulded and then tested after 7 days.

Table 2: Summary of the test methods and number of specimens

Properties	Test Method	Nur	Number of specimens			
		FO	F20	F40	F60	
Physical properties						
Density	ASTM C905 [35]	4	4	4	4	
Porosity		5	5	5	5	
Thermo-mechanical properties						
Dynamic Mechanical Analysis	ASTM D7028 [36]	2	2	2	2	
(DMA)						
Simultaneous Thermal		1	1	1	1	
Analysis (TGA/DSC)						
Mechanical properties						
Compressive strength	ASTM C579, [38]	15	15	15	15	
Split tensile strength	ASTM C579 [38]	15	15	15	15	
Microstructure						
Scanning Electron Microscopy		5	5	5	5	

	Journal Pre-proof									
	(SEM)									
	Micro-focused Fourier Transform Infrared Spectroscopy (FTIR)	5	5	5	5					
154										
122	3. Test procedure									
156	3.1. Physical Properties									
157	3.1.1. Density									
158	The hardened density of different mixes with dimensions of 25 m	nm hi	gh and	25 m	m in					
159	diameter was measured using an electronic balance (MonoBloc-AB2	204-S)	with se	nsitivi	ty of					
160	0.0001 g according to the ASTM C905 [35]. The weight and volum	ne of d	emould	ed sam	ples					
161	were measured. The hardened density then was calculated according	to the	standar	d.						
162	3.1.2. Pore size									
163	The size of the pores of different polymer matrices tested under v	various	temper	atures	was					
164	measured using an optical microscope from the cut slices of 25 m	m by	25 mm	surfac	e. A					
165	total of 60 images were taken, 3 from each sample exposed to vario	total of 60 images were taken, 3 from each sample exposed to various temperatures and with								
166	different percentages of fillers.									
167	3.2.Thermo-mechanical properties									
168	3.2.1. Glass transition temperature									
169	To measure the T_g of different mixes, dynamic mechanical tests	(DMA)) were	carried	l out					
170	according to the ASTM D7028 [36]. T_g is one of the main therma	l prope	erties in	polyn	neric					
171	composite materials. T_g is the temperature at which the state of polyn	neric r	naterial	is cha	nged					
172	from hard or glassy to rubbery and soft [18, 37]. A Q800 type 7	TA ins	trument	was ı	ısed,					
173	wherein the samples were clamped by using a dual-cantilever syst	em an	d the D	MA m	ulti-					
174	frequency strain of 1 Hz was applied. The temperature betwee	en 30°	C and	120°C	and					
175	increments of 5°C during temperature scans was set. At least two sar	nples	with din	nensio	ns of					
176	60 mm \times 10 mm \times 5 mm were tested for each series to determine the	T_g of t	he epor	ky-poly	ymer					

177 matrix. The surfaces of the samples were prepared straight, flat, clean and dry to prevent178 them slipping from the dual cantilever grips

179 *3.2.2. Loss of weight*

180 A calibrated simultaneous DSC/TGA (SDT 650) (Simultaneous Thermal Analysis) 181 manufactured by TA Instruments was used for measuring the percentages of weight loss. Dry 182 nitrogen gas at 200 ml/min was used during the experiments to purge the SDT cell. Samples 183 between 10 and 25 mg were enclosed in the standard SDT aluminium sample pans. Dynamic 184 scans were performed at a heating rate of 5°C/min from room temperature to 120°C. The 185 moisture contents in the specimens were determined by SDT analysis as the difference in the 186 weight loss between the reference matrix and the material under investigation and dried up to 187 120°C.

3.3. Mechanical Properties

189 The compressive and splitting tensile strength of polymer filled epoxy matrix were evaluated 190 at five different temperatures (23, 40, 50, 60 and 80°C) to coincide with in-service 191 temperatures for epoxy thermosets as suggested by [16]. In order to achieve the required test 192 temperature, Instron 3119 environmental chamber mounted on a 100kN servo-hydraulic MTS 193 machine was used. Before testing, a smooth surface had been prepared for the cylindrical 194 samples to facilitate the uniform distribution of load. The environmental chamber was firstly 195 set for 30 min at the required temperature before testing. Meanwhile, the other samples were 196 placed in an oven set at the desired temperature while the testing of samples at a lower test 197 temperature was being conducted. This was in addition to the 30 min soaking period in the 198 chamber. The splitting tensile and compressive strength of the samples were obtained in 199 accordance with the test procedure in the ASTM C579 [38] using 100 kN universal testing 200 machine with a loading rate of 2 mm/min.

201 3.4.1 Scanning electron microscope

The scanning electron microscope (SEM) observation was carried out to investigate the microstructural characteristics of the different polymer mixes tested under different temperatures by using (SEM, JEOL JXA 840A). The samples were carefully prepared by cutting into small pieces (dimensions <1 cm) and then coated by gold using a sputter deposition machine. Afterward, the SEM was performed on the various small gold-coated pieces.

208 3.4.2 Fourier-Transform Infrared spectroscopy

209 Microfocused Fourier-transform infrared spectroscopy (FTIR) was conducted in order to 210 determine the functional groups presented in the particulate filled epoxy base resin. FTIR 211 spectra were recorded on a Nicolet 6700 FTIR spectrophotometer with KBr pellets. Spectra 212 in the optical range of 400–4000cm-1 were then achieved by averaging 16 scans at a 213 resolution of 4 cm⁻¹.

214 4 Results and Discussion

4.1. Effect of percentage of fillers and temperature on physical properties

216 Figure 2 shows the hardened densities of all epoxy mixes. It can be seen that the density increased (from 1.093 g/cm³ to 1.538 g/cm³) with an increase in filler content. This increase 217 218 was up to approximately 40% in F40 compared to F0. The increase in density of the particulate filled resin can be explained by the replacement of lighter epoxy resin with fillers. 219 220 This is to be expected as the density of filler (FR with a density of 2.411 g/cm³ and FA with a density of 2.006 g/cm³) was higher than that of the resin system (1.193 g/cm³⁾. However, the 221 222 mix with 60% filler resulted in a slight reduction in the density of mixes compared to that of 223 the F40because the decrease in flowability of the mix resulted in the creation of more pores 224 and voids than the mixes with a lower amount of fillers. The densities of the polymer-filled epoxy based matrix with different components were also calculated (Figure 2). From the 225

combined densities of the components in the mix, it was found that the densities of the mixes increased from 1.093 g/cm³ to 1.827 g/cm³ with increase in the filler volume from 0% to 60%. Based on the experimental results, it was observed that the variation between the calculated and the measured densities increased with the increase in the amount of fillers. This variation was almost 16% for F60. This further shows that the mix containing 20% filler volumes was flowable, which was due to low viscosity of epoxy resin. However, the inclusion of 40% or more fillers produced filler-dominated matrices.

233

234

Figure 2: Density of different epoxy mixes

235 The variations in density of the particulate-filled resin can be explained by the measured 236 porosity of the mix. Figure 3 shows that the pore sizes and number of the samples increased 237 with increments of filler percentages from 0% to 60%. These pores were small for the mixes 238 with 20% filler but relatively big for 60% filler. These findings were in agreement with the 239 variations in density in Figure 2, where differences between the densities of the solid and 240 ingredients samples were higher in mixes including higher volume of fillers. Based on the 241 results of Ferdous et al., [9], the inclusion of particulate fillers not only led to an increase in density to the peak of 1.458 g/cm^3 in F60, which is close to that of the timber railway 242

243 sleepers, but also increased the porosity from 0.02% in F0 to 4.37% in F60. This showed the 244 effect of fillers in the pore structure of epoxy based polymer matrix. Figure 4 also shows the 245 porosity of the surfaces of samples without fillers tested at 60°C and 80°C. Compared to 246 Figure 3a which showed the porosity of the F0 at room temperature, it is obvious from 247 Figure 4a that by increasing the temperature to 60°C, the volume and size of the pores 248 reduced. The size of the pores of F0 further reduced at 80°C as shown in Figure 4b (from 60 249 µm at room temperature to 18µm at 80 °C). The trend was similar for F60 as can be seen in 250 Figure 5, wherein the increase of temperature showed a significant decrease on the volume 251 and size of the pores compared to that at room temperature (Figure 3d) (from 402µm at room 252 temperature to $73\mu m$ at $80^{\circ}C$). This can be due to softening and increasing of the mobility of 253 the epoxy resin molecules at higher temperatures and decreasing the pore size in the samples 254 including fillers. It has been reported that an increase in temperature can lead to a decrease of 255 pores in the mix [39]. Lin and Ritter [40] also conducted a study on the effect of temperature 256 on the pore structure of carbon xerogels derived from resorcinol-formaldehyde resins. They 257 found that increasing the carbonisation temperature caused a reduction in the number of 258 micropores, and it also had effect on the mesopore size distribution.

262

Figure 3: Porosity of epoxy based resin with different amount of fillers

(c) F40

4.2. Effect of percentage of fillers and temperature on thermo-mechanical properties

271 The effect of percentage of fillers and temperature on thermo-mechanical properties of the 272 particulate filled epoxy resins was evaluated using the Dynamic Mechanical Analysis 273 (DMA). In addition, the Simultaneous Thermal Analysis (SDT) was conducted to measure 274 weight loss at elevated temperatures to characterise the thermal stability of the particulate 275 filled epoxy resin. The DMA results in Figure 6a revealed three different temperature zones 276 that affect the storage modulus of the polymer matrices: i) a reference plateau between $30^{\circ}C$ 277 and 55° C, where stiffness remained almost stable; ii) a zone that caused considerable 278 decreases in between 55°C and 65°C, where temperatures were near T_g ; and iii) a zone that 279 caused slight decreases in storage modulus between 85 and 120°C, where the temperature 280 was above the T_g of the polymers. In zone (i), since the temperature was below T_g , the 281 molecular chain mobility of the polymer did not change, as also indicted by Ashrafi et al., 282 [41]. By increasing the temperature to 55°C and reaching the T_g in zone (ii), the molecular 283 bonds began breaking and caused the ductility of the material to increase, resulting in a 284 significant reduction in the storage modulus of the samples. In the last zone (iii), there was a gradual decrease in the storage modulus. 285

286 From the storage modulus curve in Figure 6a, it can be seen that the T_g of F0 is at 57°C 287 while that of F60 is at 63°C. On the other hand, the measured T_g from the tan delta curve in 288 Figure 6b for F0 is 65°C while that of F60 is 70°C. This result indicated that adding up to 289 60% of filler to the polymer matrix increased the T_g by 5-6°C. This enhancement in the 290 thermo-mechanical properties of epoxy resin is directly related to the higher capability of a 291 polymer matrix with fillers to store energy under high temperatures due to high thermal 292 resistance of the used fillers [9]. The T_g of the polymer mixes depended basically on the resin 293 system, while the type of resin was the same for different mixes. However, when the fillers 294 with higher degradation points (Epoxy resin-340°C, FA-800°C and FR-980°C) were included

295 in the matrix, it led to an increase in the T_g as well. Shamsuddoha et al. [42] also showed that 296 the incorporation of coarse aggregates could increase the storage modulus and T_g . In their 297 research it was found that the T_g for the mix containing 45% epoxy resin and 32% fine filler 298 $(0.06 - 350.0 \,\mu\text{m})$ with 23% hardener, was around 38°C, while with the incorporation of 60% 299 coarse aggregates (40.45 μ m – 2.36 mm), it was boosted to 60°C. Ferdous et al. [9] also 300 revealed that the T_g was increased with the increase of FA, FR and HM percentages, where in 301 different mixes, the magnitude of T_g ranged from 50°C to 55°C using the storage modulus. 302 Moreover, Figure 6b shows that the magnitude of the peak of the tan delta as a function of 303 temperature decreased from 1.05 to 0.76 with the increases in the filler percentage to 60%. 304 These results indicated that F0 with tan delta peak of 1.05 has more potential for energy 305 dissipation than the mixes with higher amount of filler as tan delta represents the ratio of the 306 dissipated energy (loss modulus) to the energy stored (storage modulus) per cycle sample 307 deformation. Energy dissipation is the result of an irreversible process in which energy is 308 transformed from initial form to final form, while the capability of the final form in term of 309 mechanical resistance is less than the initial form. Crosslink is a covalent bond formed when 310 epoxy molecules react with curing agent molecules. In crosslinking reactions of DGEBA and 311 hardener, the C-O bond within the epoxide group breaks and the carbon end of the opened 312 epoxy group reacts with the nitrogen of the amine group in the curing agent molecule [43]. 313 Crosslink density (v_c) is directly related to the storage modulus (E') in the rubbery plateau 314 region according to the following equation [44]:

$$315 \quad E' = v_c RT \tag{2}$$

where T is the temperature (K) and R is the gas constant. As shown in **Figure 7**, the crosslinking density increased with further inclusion of fillers. F60, which has the highest amount of fillers, has the highest storage modulus and consequently crosslink density is increased.

% Filler content

Figure 7. Crosslinking density of particulate filled epoxy polymer

The temperature at which the rapid loss of weight occurs can be also defined as the decomposition temperature. It is the temperature, under which the thermoset loses its weight most rapidly during the whole degradation process [45]. In many applications, adhesive strength loss is a significant variable, which leads to ambiguity in how loss of weight

329 measurements is related to loss of adhesive strength at the anticipated in-service temperature. 330 **Table 3** shows the weight loss of different mixes which was evaluated by SDT from the room 331 temperature to 120°C, similar to the temperature range for the DMA test. Neat epoxy resin 332 exhibited a minor loss of weight of around 0.02% at lower temperature and then a rapid 333 weight loss of around 0.63% at 120°C, possibly due to loss of water or unreacted volatiles, 334 which come from amine-based organic compound of hardener as indicated by Preghenella et 335 al. [46]. As a measure of the extent of degradation, the extent of weight loss is usually applied 336 . Volatile degradation species that are released from the material when network bonds break, can lead to weight loss. It is worth noting that the extent of degradation definition is not 337 338 implying 100% loss of weight at an extent of degradation of unity. The ultimate weight of the 339 sample, which is asymptotically approached over a long time is referenced by the extent of 340 reaction [17]. Thus, this significant weight loss for F0 is predicted to be followed at higher 341 temperatures due to the thermal degradation of the resin matrix, which will result in a considerable weight loss of the epoxy resin. However, F40 and F60 showed significantly less 342 343 weight loss of only around 0.2% and 0.07%, respectively at 120°C. This phenomenon can 344 play an important role in improving the retardant properties of the epoxy polymer due to their 345 higher ability to store the energy under high temperatures as was already indicated in Figure 346 **6a**.

The result of weight loss is in agreement with the measured T_g result. T_g and weight loss are two important properties showing the influence of degradation, and demonstrate that the inclusion of fillers can help to reduce the degradation rate under elevated temperatures. Thus, the thermal stability of the epoxy at high temperatures was improved, as the percentages of resin was reduced by inclusion of FA and FRA in the mixes due to the higher melting temperature of the particulate fillers compared to that of the epoxy resin.

Table 3: Weight losses after SDT scan

Journal Pre-proof									
Mix ID	(40°C) %	(60°C) %	(80°C) %	(100°C) %	(120°C) %				
F0	0.0202	0.0814	0.1789	0.4230	0.6238				
F20	0.0240	0.0755	0.1573	0.2894	0.4486				
F40	0.0183	0.0689	0.1122	0.1611	0.2045				
F60	0.0009	0.0093	0.0331	0.0656	0.0765				

354

4.3 Effect of percentage fillers and temperature on mechanical properties

The mechanical properties of the epoxy-based polymer with different percentages of fillers and at elevated temperature were assessed under compression and split tensile testing. **Table 4** summarises the results of the mechanical tests. In order to have a fair comparison of strength among the mixes with different densities, the specific strength also has been provided. The values listed within parentheses are the standard deviation of the test results.

Table 4: Mechanical properties of epoxy polymer matrices under elevated temperature

D						-					
Proper	ty	Temperature									
	-	Room 40°C		:	50°C		60°C		80°C		
Mix ID	Density	strength	Specific strength	strength	Specific strength	strength	Specific strength	strength	Specific strength	strength	Specific strength
Compr	essive strengt	h (MPa)									
F0	1.093	92.0 (3.3)	84.2	51.2 (1.4)	46.8	25.2 (2.5)	23.1	3.1 (0.6)	2.8	1.4 (0.7)	1.3
F20	1.321	85.7 (2.9)	64.8	52.8 (1.8)	39.9	33.4 (2.2)	25.3	7.3 (1.6)	5.5	5.3 (0.6)	4.0
F40	1.538	82.4 (2.3)	53.6	58.7 (0.1)	38.2	45.1 (3.8)	29.3	37.0 (2.1)	24.1	34.4 (0.0)	22.3
F60	1.533	59.4 (6.7)	38.7	47.4 (0.2)	30.9	44.3 (6.4)	29.0	43.5 (1.7)	28.4	43.1 (3.7)	28.1
Splitting tensile strength (MPa)											
F0	1.093	33.9 (1.4)	31.0	15.8 (1.3)	14.4	3.8 (1.6)	3.5	1.0 (0.7)	0.9	0.7 (0.2)	0.6
F20	1.321	27.1 (0.8)	20.5	19.3 (1.2)	14.6	10.3 (3.8)	7.8	3.7 (3.4)	2.8	3.2 (1.9)	2.4
F40	1.538	25.3 (1.7)	16.5	17.9 (1.3)	11.6	14.8 (3.2)	9.6	10.3 (5.4)	6.7	9.5 (1.5)	6.1
F60	1.533	20.4 (0.7)	13.3	15.7 (0.7)	10.2	12.3 (1.0)	8.0	12.1 (2.1)	7.9	10.8 (0.7)	7.0

362

Figure 8 shows the typical failure mode of particulate-filled epoxy resin in compression at elevated temperature. As shown in Figure 8, despite the creation of micro cracks, which were not easy to see with the naked eye, specimens F0 and F20 were deformed without crushing even after reaching their ultimate strengths (Figure 8 a and b). These samples behaved like

367 elastic materials as they resumed their original shape when the load was released, even 368 though they retained some of their bulged shape. On the other hand, at lower temperatures, 369 micro cracks followed by a shear cracks were observed for specimen F40. It is interesting to 370 note that for F60, noticeable failures with a huge sudden shear crack at ultimate strength was 371 observed, showing a brittle fracture. The stiffness of fillers can be attributed to the 372 mechanisms of this phenomenon for those mixes containing higher percentages of filler, 373 particularly F60 as was also reported by Ferdous et al., [9]. Indeed, the behaviour of polymer 374 matrices changed from flexible to relatively rigid with an increase in the volume of filler, which is also indicated by the abrupt drop in the stress strain curve in the next paragraph. The 375 376 failure mode could be also related to pore size and volume. The increase of porosity with the 377 increase of fillers also affected the transfer of stresses from one part to another that may 378 increase stress concentration and lead to premature failure. High-porosity mixes (F40 and 379 F60) have larger pores randomly distributed through a matrix and failed in a brittle manner. 380 However, the crack along the direction of the compressive stress rather than along the 381 interface between the resin and the fillers, indicates the excellent adhesion of fillers to the 382 epoxy matrix. Similarly, Ferdous et al. [9] found that epoxy-based polymer containing up to 383 30% of FA, FR and HM exhibited an elastic failure mode without visible cracks under 384 compression at room temperature while the samples including 40%, 50% and 60% failed by 385 cracking. One can observe that the failure modes for resin-rich mixes at higher temperatures 386 are similar to those at room temperature, indicating flexible matrices. However, it was also 387 apparent that the failure mode in F40 became flexible under elevated temperature and it was 388 followed by microcracks and bulged shape. For F60, a semi-ductile failure can be observed at 389 higher temperatures; the failure was initiated as a microcrack, then propagated as a shear 390 failure that resulted in multiple fracture and crushing under ultimate load. With an increase in 391 the temperature, as T_g was reached, the epoxy resin became very ductile. Meanwhile, the

inclusion of fillers could hinder the mobility of the polymer's molecular chains, and provide
some stiffness too. The strength retention at this temperature, which will be discussed in the
last paragraph, proves that the softening of the matrix allowed the fillers to move freely in the
direction of the loading, and their porosity decreased, resulting in a better stress transfer [39].
The reduction in porosity might consequently result in a decrease of brittleness.

397

Figure 8: Failure modes of particulate-filled resin under compression at different

399

temperatures

400 The compressive stress and strain behaviour of F0 as reference and F60 as the mix containing 401 the highest percentage of filler at room temperature to 80°C are plotted in Figure 9. For F0, 402 slightly non-linear stress-strain behaviour is observed due to its nature of rubber-like 403 material. The non-linearity then gradually reduced with an increment of filler content and 404 became almost linear for the mix containing 60% fillers (Figure 9b). It is noticeable that at 405 room temperature F60 has a lower failure strain compared to F0. This is caused by the 406 introduction of particulate fillers in the epoxy with larger surface area and the creation of a 407 rigid bond with the resin [9]. This consequently demonstrated an inflexible polymer matrix 408 due to gradual increases in the volume of higher-modulus materials exhibiting a lower failure 409 strain (Figure 9b) as it is also comparable in Table 4. However, with the increase of 410 temperature in addition to retaining the properties, F60 exhibits a significant decrease in 411 stiffness with an increase in failure strain. At high temperature, it showed more ductility due 412 to the softening of the epoxy resin which led to an increase in bonding to fillers resulting in 413 retaining strength at higher temperatures.

414 Figure 10 shows the strength retention in compression of particulate filled epoxy-415 based resin at elevated temperature. In general, the compressive strength of epoxy-based 416 polymers decreased with increasing temperature. This reduction in strength was caused by 417 the softening of the epoxy matrix with the increase in temperature. Generally, higher strength 418 retention was observed for the mixes containing filler compared to the neat epoxy due to the 419 better filler and matrix interaction, which could be due to the reorientation of the fillers 420 during the softening of the resin. Moreover, the softening of the resin and reduction in porosity resulted in the bonding between the filler and the resin being slightly enhanced. This 421 422 result was supported by higher T_g and cross linking density of mixes with higher amount of 423 fillers. As shown in Figure 10 for samples without or with low amount of fillers (F0 and 424 F20), there was a significant drop in the strength retention capacity at 60°C due to exceeding

the T_g of polymer. When the temperature increased to 60°C (about their T_g), epoxy reached the heat distortion temperature (HDT), and it began to deform. The continued increase in temperatures to 80°C led to more ductile and elastic behaviour and yield point and strength loss. At this level of temperature, F0 and F20 retained only 3.4% and 8.5% respectively of their compressive strength at room temperature. The low compressive strength retention of mixes with low amount of particulate fillers can be directly linked to the softening of epoxy resin at a temperature near or above T_g and losing its adhesive and cohesive strength, as was

432 also found by Bajracharya et al. [47]. On the 433 other hand, F40 and F60 could retain 44.9% and 434 73.3% respectively of their compressive strength 435 at 60°C, and 41.7% and 72.6% respectively at 436 80°C. The higher compressive strength retention 437 for F40 and F60 was firstly due to the better 438 thermal properties of the fillers including higher 439 T_g and higher thermal stability as was discussed

in previous sections. Thus, the polymer filled epoxy can continue to support a load in higher
temperatures. This could be due to the softening of epoxy resin at higher temperatures, which
led to a reduction in the size and amount of pores in the mixes with higher percentages of
fillers as is shown in Figure 8.

(a)

Figure 9: Compressive stress and strain behaviour at in-service elevated

temperature

F

Figure 10: Compressive strength retention at in-service elevated temperature

451 Figure 11 shows the failure mode of various mixes after a splitting tensile test at room 452 temperature and at the maximum temperature of 80 °C. As can be seen in Figure 11, in the 453 same way as the samples tested under compression strength, F0 samples behave like elastic 454 material and they deformed without visible cracks even after reaching their ultimate 455 strengths; the samples resumed their original shape when the load was released. However, 456 mixes containing 20%, 40% and 60% fillers failed primarily at a single cross section along 457 the diameter by brittle fracture, which was followed by the abrupt drop in the stress-strain 458 curve at peak load. This was due to the poor filler/matrix adhesion. At 80 °C, although F0 459 showed the same failure mode as room temperature, F20 and F40 showed ductile failure, 460 which is due to the softening of epoxy resin at higher temperatures. The softening of the 461 matrix allowed fillers to have better bonding with epoxy resin through the matrix, resulting in 462 the increase in failure strength and flexibility of the matrix. F60, however, showed a semi-463 brittle fracture with inclined failure surface along the width of the sample tested at maximum

- temperature of 80 °C. The resin transfers stress however, as the temperature increased, caused
- the resin to become malleable and soft, thus, better interlocking between resin and fillers was
- achieved.

467

Figure 11: Failure modes of particulate-filled resin under tension at different temperatures From **Figure 12**, stress-strain graphs show that at lower temperatures, F60 was completely brittle, while F0 was ductile. Moreover, split tensile results at **Table 4** show the reduction of strength with increasing filler volumes at room temperature due to gradual increases in the amount of higher stiffness filler materials. This result is in agreement with the trend reported by Lokuge and Aravinthan [32], who revealed that when the epoxy content was further

474 increased (20%), in addition to flexural strength and compressive strength, split tensile 475 strength also reduced. However, as the temperature reached 80°C, not only could F60 retain 476 more than 50% of the peak stress but also the tensile failure strain of F60 increased by the 477 rise in temperature. This phenomenon happened while neat epoxy resin was deformed under minimal stress of less than 2-3 MPa at maximum temperatures of 60 °C and 80 °C. The 478 479 significant variations in strength for F0 and F20, which was observed with an increase in the 480 temperature was due to the softening of epoxy resin and a loss of the properties in resin-rich 481 mixes. The split tensile retention results given in Figure 13 revealed that the inclusion of higher percentages of fillers to the matrix could significantly help to retain the strength by 482 483 almost 41% and 37% for F40, and 59% and 53% respectively for F60 at 60°C and 80°C,. 484 Resin-rich samples (F0 and F20) significantly lost their strength particularly after 60°C. F0 experienced a significant reduction of 97% and 98% respectively in its strength at 60 °C and 485 486 80°C,.

Figure 12: Tensile stress and strain behaviour at in-service elevated temperature

Figure 13: Tensile strength retention at in-service elevated temperature

492 **4.5** Microstructure of particulate-filled epoxy resin at elevated temperature

493 When materials are combined, their properties are governed not only by the characteristics of 494 individual components, but also by the interface between them [48]. Moreover, the 495 mechanical characteristics of a particulate filled polymer depend on the type of 496 distribution of particles, which can be characterized by SEM [49]. From this study, the SEM 497 revealed that the microstructure of F0 and F60 specimens has a direct correlation on the 498 physical, thermo-mechanical and mechanical properties of epoxy-based polymer exposed to in-service elevated temperatures (Figure 14). Specimen F60 was chosen since it exhibited the 499 500 highest property retention at 80°C. The FTIR of specimen F0 was also analyzed and 501 presented for comparison. As can be seen in Figures 14a and 14c, there are remarkable 502 differences in the texture and form of the particulate-filled epoxy resin compared to the neat 503 epoxy samples. Dense microstructures with small pore sizes were formed in samples without 504 filler (F0), while the mix containing 60% FA and FR (F60) showed various pores and weak

interfacial bond between different fillers and the resin through the matrix due to pores and voids in the matrix (Figure 14c). This subsequently decreased the mechanical performance of the polymer matrix at room temperature. Ahmad et al. [50] pointed out that the presence of fused silica resulted in inhomogeneous distribution and weakened the interaction between the matrix and the filler due to the defect in the matrix caused by the voids between the particles, and led to undesirable material properties.

511 As shown in **Figure 14a**, F0 samples at room temperature have a compact but 512 relatively rough surface even after the application of the load while after testing at 80°C, the roughness of fracture surface of epoxy samples was reduced (Figure 14c). On the other 513 514 hand, a close inspection of Figure 14c and 14d revealed that the exposure of F60 to 80°C not 515 only reduced the amount of pores but also improved the interfacial bond between the fillers 516 and resin compared to room temperature (Figure 14c). For FR and FA as spherical 517 inclusions, the packing arrangement defines the quantity of fillers and the distribution of 518 particles. Thus, when the temperature increased, it enabled a better distribution of particles 519 and consequently a dense microstructures with lower pores or voids formation. This then 520 helped to retain the mechanical strength and increase the strain failure. This was in agreement 521 with the results reported in the physical section, wherein the increase of temperature led to a 522 significant decrease on the number and size of the pores (Figures 3b and 5b).

525 (a)F0 at room temperature526

(b) F0 at 80°C

527

528 (c) F60 at room temperature

(d) F60 at 80°C

529 Figure 14: SEM micrographs of particulate filled epoxy resins

530 **4.6 FTIR results of particulate filled resin subjected to elevated temperature**

FTIR spectra was performed after the mechanical tests to determine functional groups presented in the particulate filled epoxy base resin. The mixing of epoxy resin produced carboxylic and carbonyl acid by-products due to the reaction of the curing agent and epoxy resin [51]. The solid particulate-filled epoxy resin composite was formed through the ring opening polymerisation reaction in the presence of DGEBA, amine-based hardener and fillers (FA and FR). During the reaction, the carboxyl groups or hydroxyl groups were produced

537 that presented as a pendant in part A. From the spectrum, the characteristic bands of F0, F20, 538 F40 and F60 were observed at various wavenumbers as shown in Figure 15. C-H and C-O were found to be major phases for all specimens. The band observed at ~3800 cm⁻¹ for 539 540 different mixes corresponded to O-H stretching band. The second group of the bands, which were located at 2904 cm⁻¹ and 2870 cm⁻¹ were attributed to the stretching vibration of C-H 541 542 group of epoxy [52, 53]. However, the intensity of these wavenumbers decreased with further 543 increase of fillers (F40 and F60). Instead of the wavenumber of 2000 cm⁻¹, the third group of bands were detected. The band at 1703 cm⁻¹ and 1718 cm⁻¹ was due to the stretching 544 vibration of C-O in ester [3]. The bands at wavenumber 1508 cm⁻¹ was the characteristic band 545 546 for the aromatic ring stretching of C=C, characteristic of DGEBA epoxy systems [54]. The band at 1508 cm⁻¹ may also represent nitro deformation from the cycloaliphatic amine curing 547 agent. The bands corresponding to epoxide ring (817 cm⁻¹) wavenumbers at 1024 and 1234 548 cm⁻¹ were characteristic bands for C-O stretching of saturated aliphatic primary alcohols [48, 549 550 55], unlike the bands observed at C-O for F0 and F20 (resin-rich mixes), where a restrictive 551 stretching with further inclusion of filler was observed (Figures 15c and 15d). This was due 552 to the decrease in the amount of resin by increasing the percentages of fillers. As shown in 553 Figure 15, mixes of all of the functional groups have the same peak values at their lowest and 554 highest temperatures except for the shifting bands by increasing the temperatures, particularly 555 for resin-rich samples (F0 and F20). A small shift of bands to higher wavenumbers by 5 to 15 556 cm⁻¹ was observed in the spectra with the inclusion of fillers due to the interaction between 557 epoxy and fillers (FA and FR). FTIR results demonstrate that the curing reaction completed 558 and the formation of polymeric epoxy structures in all the particulate composites was done. 559 These results are in accordance with SEM images showing the formation of solid resin after 560 the curing reaction. (Figure 14). These results showed that the sensitivity of epoxy resin 561 against in-service temperature can be sufficiently reduced by the inclusion of fillers. This

562 further indicates that the particulate filled epoxy resin will exhibit better engineering 563 properties against in-service elevated temperature, as the fillers provide protection against 564 thermal conditioning increasing their durability and suitability in civil engineering

570

Journal Pre-proof

Figure 15. FTIR graphs at room temperature and at 80°C

571 5. Simplified prediction model for particulate-filled epoxy based resin

The results from this study showed that the mechanical properties of particulate-filled epoxy resin were very much affected by the in-service temperature while the percentages of fillers played a major role in retaining its mechanical properties. This section presents the development of a prediction model that describes reliably the mechanical properties of particulate-filled epoxy resin with different percentages of fillers and subjected to in-service elevated temperature.

578 5.1. Development of prediction model

579 Saberian et al. [56, 57] and Mohajerani, et al. [58] proposed a power function for predicting 580 the resilient modulus of recycled pavement material containing different percentages of fine 581 and coarse rubber. In the development of the model, they used the regression coefficients of 582 the relationship between the resilient modulus, confining stress, deviator stress, and stiffness 583 of recycled pavement mixes from the results of their experimental works. Following this 584 approach, in this study, the compressive strength and splitting tensile strength were presented 585 as a function of the in-service elevated temperature along with the amount of fillers, to 586 estimate the strength of the particulate-filled epoxy resin using a power function. Eq. (2) 587 showed the general form to evaluate the relationship between the predicted values (Y), 588 mechanical strength, temperature, and percentage fillers.

589
$$Y = K_1 \times (X_1) {}^{K}_2 \times (X_2) {}^{K}_3$$
 (2)

590 where X_1 is percentage amount of fillers, X_2 is the level of in-service elevated temperature, 591 and K_1 , K_2 , K_3 are regression parameters.

592 The regression equations to predict the compressive strength (Y_{Comp}) and the splitting tensile 593 strength ($Y_{Split_tensile}$) are presented in **Table 5**. The regression parameters of the different

594 samples were calculated based on the experimental results fitted against the power function 595 model using Excel, where the strength properties, amount of fillers and different levels of 596 temperature were given as input. The regression parameters were achieved as product of matrix calculations. The coefficient of determination, R^2 for the prediction models has also 597 598 been provided in Table 5, while the relationship between the experimental and predicted 599 values has been provided in **Figure 16**. In both equations, K_1 and K_2 are positive values, 600 implying that the outputs increased with an increase in the amount of filler while K₃ is 601 negative indicating that by increasing the temperature, the mechanical properties will 602 decrease.

603 Table 5. Equations of the prediction model of the particulate-filled epoxy based resin based604 on the relationships among the experimental values, percentages of fillers, and temperature.

609 (b)
610 Figure 16. Relationship between the experimental and predicted values a) compressive
611 strength and b) splitting tensile strength

5.2. Correlation between compressive strength and splitting tensile test results

613 The compressive strength test of epoxy-based resin, incorporating different percentages of 614 fillers tested under in-service elevated temperature were presented against splitting tensile 615 strength in Figure 17 in order to understand the interdependence between these strength 616 properties. It can be observed in the figure that there is a significant linear relationship 617 between the compressive strength and the splitting tensile strength, with the coefficient of 618 correlation of 0.95. This coefficient of correlation is very high and reflects a strong relationship between two different tests. This result also showed that the splitting tensile 619 620 strength, UCS_{Split tensile} of the particulate-filled epoxy resin with different percentages of 621 fillers and subjected to in-service elevated temperature can be predicted from its compressive 622 strength, which is given as Eq. (2). It is recommended however that the reliability of this 623 proposed equation be validated against percentages of fillers and in-service elevated 624 temperature outside the levels investigated in this study.

 $625 \quad Y_{Split_tensile} = 0.3069(Y_{Comp}) + 0.2746$ $626 \quad (2)$

Figure 17. Relationship between the compressive strength and splitting tensile strength

629 5 Conclusions

627

In this study, the physical, thermo-mechanical, and microstructural properties of epoxy-based
polymers with different percentages of particulate fillers composed of fly-ash and fire
retardant fillers were evaluated at elevated temperatures. From the results, the following
conclusions are drawn:

The density of particulate-filled epoxy-based polymer resin increased with increasing
 amount of fillers. However, a higher discrepancy between the actual and calculated
 densities was noted for mixes with higher amount of fillers than those with lower
 amount of fillers due to an increase in the amount and size of pores in these samples.

- 638 The size and number of pores of the particulate-filled epoxy-based polymer resin
 639 decreased with increasing temperature due to softening of the epoxy resin.
- Thermo-dynamical analysis from DMA test showed that adding 0–60% of filler to the
 polymer matrix could increase the Tg by at least 5°C. Furthermore, results of SDT

showed that the thermal stability of epoxy-based resin at high temperatures wasimproved by the inclusion of FA and FR.

- Large increases in ductility (strain to failure) and reduction in ultimate strength were
 observed at elevated temperatures. Nevertheless, the addition of fillers led to retention
 of compressive and tensile strengths by up to 72% and 52%, respectively for F60 at
 the maximum test temperature of 80°C. This high mechanical strength retention was
 due to the high thermal stability of particulate fillers.
- SEM images showed the formation of dense microstructure with utilizing fillers in the
 mixtures at high temperatures. This resulted in higher compressive and split tensile
 strength retention in epoxy with fillers under elevated temperature.
- 652 FTIR analysis indicated that C-H and C-O were found to be major phases for all 653 specimens. However, there was restrictive stretching with the addition of filler up to 654 60%. The curing reaction was completed and the formation of polymeric epoxy 655 structures in all the particulate-filled resins was performed. All of the functional group 656 mixes had the same peak values at their lowest and highest temperatures and except 657 for shifting of band by increasing of temperatures, particularly for resin-rich samples, which shows the in-service temperature, did not lead to significant changes in the 658 659 spectra of different mixes.

 A simplified prediction equation based on power function was developed to predict the mechanical properties of the epoxy resin system with different percentages of particulate fillers at in-service elevated temperatures. Comparison between the predicted values and experimental results showed a strong correlation and the coefficient of correlation is at least 0.72.

The above results showed that the sensitivity of epoxy resin against in-servicetemperatures can be significantly improved by the inclusion of particulate fillers. This

type of polymer matrix is suitable for manufacturing infrastructures exposed to the environment such as polymer railway sleepers, chemical storage tanks, and bridge girders. Continued efforts should be made towards understanding the behaviour of these new materials when exposed to other environmental factors such as moisture and photochemical reactions from solar ultraviolet (UV) and their synergetic effect in the presence of in-service temperatures.

673 Acknowledgements

674 The first author gratefully acknowledges the financial support including a stipend research

scholarship and fees for a research scholarship from the University of Southern Queensland

676 for conducting her PhD. The authors also in very thankful to Dr Barbara Harmes for her help

677 in editing the manuscript. The authors also acknowledge the material support of ATL

- 678 Composites Pty Ltd (Gold coast, Australia).
- 679

680 **References:**

- [1] Ferdous, W., Ngo, T.D., Nguyen, K.T., Ghazlan, A., Mendis, P. and Manalo, A.,
 2018. Effect of fire-retardant ceram powder on the properties of phenolic-based GFRP
 composites. *Composites Part B: Engineering*, 155, pp.414-424.
- [2] Cantwell, W.J., Roulin-Moloney, A.C. and Kaiser, T., 1988. Fractography of unfilled
 and particulate-filled epoxy resins. Journal of materials science, 23(5), pp.1615-1631.
- [3] Yang, Y., Xian, G., Li, H. and Sui, L., 2015. Thermal aging of an anhydride-cured epoxy resin. *Polymer degradation and stability*, *118*, pp.111-119.
- [4] Jia, P., Liu, H., Liu, Q. and Cai, X., 2016. Thermal degradation mechanism and flame
 retardancy of MQ silicone/epoxy resin composites. *Polymer Degradation and Stability*, *134*, pp.144-150.
- 691 [5] Strong, A. B. 2008. Fundamentals of composites manufacturing: materials, methods692 and applications, Society of Manufacturing Engineers.
- [6] Issa, C. A. & Debs, P. 2007. Experimental study of epoxy repairing of cracks in concrete. Construction and Building Materials, 21, 157-163
- [7] Michels, J., Widmann, R., Czaderski, C., Allahvirdizadeh, R. and Motavalli, M.,
 2015. Glass transition evaluation of commercially available epoxy resins used for
 civil engineering applications. Composites Part B: Engineering, 77, pp.484-493.
- [8] Manalo, A.C., Surendar, S., van Erp, G., and Benmokrane, B. (2016). Flexural
 behavior of an FRP sandwich system with glass-fiber skins and a phenolic core at
 elevated in-service temperature. Composite Structures, 152: 96-105.

- [9] Ferdous, W., Manalo, A., Aravinthan, T. & Van Erp, G. 2016. Properties of epoxy polymer concrete matrix: Effect of resin-to-filler ratio and determination of optimal mix for composite railway sleepers. Construction and Building Materials, 124, 287-300.
- [10] Duell, J., Wilson, J. & KESSLER, M. 2008. Analysis of a carbon composite
 overwrap pipeline repair system. International Journal of Pressure Vessels and Piping,
 85, 782-788.
- 708 [11] Azraai, S., Lim, K., Yahaya, N. & Noor, N. 2015. Infill materials of epoxy
 709 grout for pipeline rehabilitation and repair. Malaysian Journal of Civil Engineering,
 710 27, 162-167.
- [12] Shamsuddoha, M., Islam, M.M., Aravinthan, T., Manalo, A. and Lau, K.T.,
 2013. Effectiveness of using fibre-reinforced polymer composites for underwater steel
 pipeline repairs. *Composite Structures*, *100*, pp.40-54.
- Mohammed, A.A., Manalo, A.C., Maranan, G.B., Zhuge, Y. and Vijay, P.V.,
 2018. Comparative study on the behaviour of different infill materials for prefabricated fibre composite repair systems. *Construction and Building Materials*, *172*,
 pp.770-780.

718

719

- [14] Ferdous, W., Manalo, A. and Aravinthan, T., 2017. Bond behaviour of composite sandwich panel and epoxy polymer matrix: Taguchi design of experiments and theoretical predictions. *Construction and Building Materials*, *145*, pp.76-87.
- [15] Sirimanna, C., Islam, M.M., Aravinthan, T. Temperature effects on full scale
 FRP bridge using innovative composite components. Advances in FRP Composites in
 Civil Engineering. Springer, 2011, 376-380.
- Manalo, A.C., Maranan, G., Sharma, S., Karunasena, W., and Bai, Y. (2017).
 Temperature-sensitive mechanical properties of GFRP composites in longitudinal and transverse directions: A comparative study. Composite Structures, 173, 255–267.
- Anderson, B.J., 2011. Thermal stability of high temperature epoxy adhesives
 by thermogravimetric and adhesive strength measurements. Polymer degradation and
 stability, 96(10), pp.1874-1881.
- 730 [18] Polanský, R., Mentlík, V., Prosr, P. and Sušír, J., 2009. Influence of thermal
 731 treatment on the glass transition temperature of thermosetting epoxy laminate.
 732 Polymer Testing, 28(4), pp.428-436.
- Anderson, B.J., 2013. Thermal stability and lifetime estimates of a high
 temperature epoxy by Tg reduction. *Polymer degradation and stability*, 98(11),
 pp.2375-2382.
- Koh, S.W., Kim, J.K. and Mai, Y.W., 1993. Fracture toughness and failure
 mechanisms in silica-filled epoxy resin composites: effects of temperature and
 loading rate. *Polymer*, *34*(16), pp.3446-3455.
- Fu, S.Y., Feng, X.Q., Lauke, B. and Mai, Y.W., 2008. Effects of particle size,
 particle/matrix interface adhesion and particle loading on mechanical properties of
 particulate-polymer composites. *Composites Part B: Engineering*, *39*(6), pp.933-961.
- 742 [22] Karbhari, V.M., 2007. Fabrication, quality and service-life issues for
 743 composites in civil engineering. In Durability of composites for civil structural
 744 applications (pp. 13-30).

- Ray, B.C., 2006. Temperature effect during humid ageing on interfaces of
 glass and carbon fibers reinforced epoxy composites. Journal of Colloid and Interface
 Science, 298(1), pp.111-117.
- 748 [24] Mauerer, O., 2005. New reactive, halogen-free flame retardant system for
 749 epoxy resins. *Polymer Degradation and Stability*, 88(1), pp.70-73.
- [25] Wang, P., Xia, L., Jian, R., Ai, Y., Zheng, X., Chen, G. and Wang, J., 2018.
 Flame-retarding epoxy resin with an efficient P/N/S-containing flame retardant: preparation, thermal stability, and flame retardance. *Polymer Degradation and Stability*, 149, pp.69-77.

754

755

756

762

763

764

765

766

767

768

769

774

- [26] Khotbehsara, M.M., Mohseni, E., Yazdi, M.A., Sarker, P. and Ranjbar, M.M.,
 2015. Effect of nano-CuO and fly ash on the properties of self-compacting mortar. *Construction and Building Materials*, 94, pp.758-766.
- [27] Khotbehsara, M.M., Miyandehi, B.M., Naseri, F., Ozbakkaloglu, T., Jafari, F.
 and Mohseni, E., 2018. Effect of SnO2, ZrO2, and CaCO3 nanoparticles on water
 transport and durability properties of self-compacting mortar containing fly ash:
 Experimental observations and ANFIS predictions. *Construction and Building Materials*, 158, pp.823-834.
 - [28] Moloney, A.C., Kausch, H.H., Kaiser, T. and Beer, H.R., 1987. Parameters determining the strength and toughness of particulate filled epoxide resins. Journal of materials science, 22(2), pp.381-393.
 - [29] Bărbuță, M., Harja, M. & Baran, I. 2009. Comparison of mechanical properties for polymer concrete with different types of filler. Journal of Materials in Civil Engineering, 22, 696-701.
 - [30] Rebeiz, K., Serhal, S. & Craft, A. 2004. Properties of polymer concrete using fly ash. Journal of Materials in Civil Engineering, 16, 15-19
- [31] Gorninski, J. P., Dal Molin, D. C. & Kazmierczak, C. S. 2004. Study of the
 modulus of elasticity of polymer concrete compounds and comparative assessment of
 polymer concrete and portland cement concrete. Cement and Concrete Research, 34,
 2091-2095.
 - [32] Lokuge, W. & Aravinthan, T. 2013. Effect of fly ash on the behaviour of polymer concrete with different types of resin. Materials & Design, 51, 175-181.
- W. Ferdous, A. Manalo, G. Van Erp, T. Aravinthan, K. Ghabraie, Evaluation
 of an innovative composite railway sleeper for a narrow-gauge track under static load,
 Journal of Composites for Construction 22(2) (2018) 1-13.
- W. Ferdous, A. Manalo, T. Aravinthan, A. Fam, Flexural and shear behaviour
 of layered sandwich beams, Construction and Building Materials 173 (2018) 429-442.
- 781 [35] ASTM Standard, ASTM C905: Standard Test Methods for Apparent Density
 782 of Chemical Resistant Mortars, Grouts, Monolithic Surfacings, and Polymer
 783 Concretes, United States, 2012.
- 784 [36] ASTM Standard, ASTM D7028: Standard Test Method for Glass Transition
 785 Temperature (DMA Tg) of Polymer Matrix Composites by Dynamic Mechanical
 786 Analysis (DMA), United States, 2008.
- [37] Etaati, A., Pather, S., Fang, Z. and Wang, H., 2014. The study of fibre/matrix
 bond strength in short hemp polypropylene composites from dynamic mechanical
 analysis. Composites Part B: Engineering, 62, pp.19-28.

- 790 [38] ASTM Standard, ASTM C579: Standard Test Methods for Compressive
 791 Strength of Chemical-Resistant Mortars, Grouts, Monolithic Surfacings, and Polymer
 792 Concretes, United States, 2012.
- 793 [39] Viklund, С., Svec, F., Fréchet, J.M. and Irgum, K., 1996. 794 Monolithic, "molded", porous materials with high flow characteristics for separations, 795 catalysis, or solid-phase chemistry: control of porous properties during 796 polymerization. Chemistry of materials, 8(3), pp.744-750.
- [40] Lin, C. and Ritter, J.A., 2000. Carbonization and activation of sol-gel derived carbon xerogels. Carbon, 38(6), pp.849-861.
- [41] Ashrafi, H., Bazli, M., Vatani Oskouei, A. and Bazli, L., 2017. Effect of
 Sequential Exposure to UV Radiation and Water Vapor Condensation and Extreme
 Temperatures on the Mechanical Properties of GFRP Bars. Journal of Composites for
 Construction, 22(1), p.04017047.
- 803 [42] Shamsuddoha, M., Islam, M.M., Aravinthan, T., Manalo, A. and Lau, K.T.,
 804 2013. Characterisation of mechanical and thermal properties of epoxy grouts for
 805 composite repair of steel pipelines. Materials & Design (1980-2015), 52, pp.315-327.
- 806 [43] Aghadavoudi, F., Golestanian, H. and Tadi Beni, Y., 2017. Investigating the
 807 effects of resin crosslinking ratio on mechanical properties of epoxy-based
 808 nanocomposites using molecular dynamics. Polymer Composites, 38, pp.E433-E442.
- 809 [44] Jiang, H., Su, W., Mather, P.T. and Bunning, T.J., 1999. Rheology of highly
 810 swollen chitosan/polyacrylate hydrogels. Polymer, 40(16), pp.4593-4602.
- 811 [45] Liu, R. and Wang, X., 2009. Synthesis, characterization, thermal properties
 812 and flame retardancy of a novel nonflammable phosphazene-based epoxy
 813 resin. *Polymer degradation and stability*, 94(4), pp.617-624.
- 814 [46] Preghenella, M., Pegoretti, A. and Migliaresi, C., 2005. Thermo-mechanical
 815 characterization of fumed silica-epoxy nanocomposites. Polymer, 46(26), pp.12065816 12072.
- 817 [47] Bajracharya, R.M., Manalo, A.C., Karunasena, W., and Lau, K.T.
 818 (2017). Durability characteristics and property prediction of glass fibre reinforced
 819 mixed plastics composites. Composites Part B: Engineering, 116, 16–29
- [48] Goyanes, S.N., König, P.G. and Marconi, J.D., 2003. Dynamic mechanical
 analysis of particulate-filled epoxy resin. *Journal of applied polymer science*, 88(4),
 pp.883-892.
- [49] Kenyon, A.S. and Duffey, H.J., 1967. Properties of a particulate-filled
 polymer. *Polymer Engineering & Science*, 7(3), pp.189-193.
- 825 [50] Ahmad, F.N., Jaafar, M., Palaniandy, S. and Azizli, K.A.M., 2008. Effect of
 826 particle shape of silica mineral on the properties of epoxy composites. Composites
 827 Science and Technology, 68(2), pp.346-353.
- Tcherbi-Narteh, A., Hosur, M., Triggs, E. and Jeelani, S., 2013. Thermal stability and degradation of diglycidyl ether of bisphenol A epoxy modified with different nanoclays exposed to UV radiation. *Polymer degradation and stability*, *98*(3), pp.759-770.
- 832 [52] Noobut, W. and Koenig, J. L., 1999. Interfacial behavior of epoxy/E-glass
 833 fiber composites under wet-dry cycles by fourier transform infrared
 834 microspectroscopy. *Polymer composites*, 20(1), pp.38-47.

- 835 [53] Wang, Z., Zhao, X.L., Xian, G., Wu, G., Raman, R.S. and Al-Saadi, S., 2017. 836 Durability study on interlaminar shear behaviour of basalt-, glass-and carbon-fibre 837 reinforced polymer (B/G/CFRP) bars in seawater sea sand concrete 838 environment. Construction and Building Materials, 156, pp.985-1004.Y.M.
- 839 [54] Cherdoud-Chihani, A., Mouzali, M. and Abadie, M.J.M., 2003. Study of 840 crosslinking acid copolymer/DGEBA systems by FTIR. Journal of applied polymer 841 science, 87(13), pp.2033-2051.
- 842 Delor-Jestin, F., Drouin, D., Cheval, P.Y. and Lacoste, J., 2006. Thermal and [55] photochemical ageing of epoxy resin-Influence of curing agents. Polymer 843 Degradation and Stability, 91(6), pp.1247-1255. 844
- 845 Saberian, M., Li, J., Nguyen, B.T. and Setunge, S., 2019. Estimating the [56] 846 resilient modulus of crushed recycled pavement materials containing crumb rubber 847 using the Clegg impact value. Resources, Conservation and Recycling, 141, pp.301-848 307.
- 849 Saberian, M., Shi, L., Sidiq, A., Li, J., Setunge, S. and Li, C.Q., 2019. [57] 850 Recycled concrete aggregate mixed with crumb rubber under elevated temperature. 851 Construction and Building Materials, 222, pp.119-129.
- Mohajerani, A., Nguyen, B., Glavacevic, L., 2016. Estimation of resilient 852 [58] Journalpre 853 modulus of
- 855 856

Highlights

- Degradation and stability of particulate-filled epoxy polymers at elevated temperature. •
- High strength retention of epoxy due to the high thermal stability of fillers. •
- Fillers make epoxy resin with a dense microstructure at elevated temperature. •
- FTIR analysis revealed no chemical changes in the epoxy at elevated temperature.
- Strong correlation between predicted values and experimental results •